37 research outputs found

    Comparison of Flexural Strength of Mineral Trioxide Aggregate, Calcium-enriched Mixture and BioAggregate

    Get PDF
    Introduction: The aim of this study was to compare the flexural strength of mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM), and BioAggregate (BA). Methods and Materials: In this study, the flexural strength of materials was measured using a 3-point bend test. After being prepared, MTA, CEM, and BA were inserted into the intra-putty molds using amalgam plugger. The specimens were covered with a sponge wetted with synthetic tissue fluid (STF) and incubated for 96 h. They were then subjected to a 3-point bend test using Universal Testing Machine. The Kruskal-Wallis and Mann-Whitney U tests were used to compare flexural strength in groups. In this study, P<0.05 was considered as the significant level. Results: There were significant differences between the three groups in terms of the flexural strength (P<0.001). The mean flexural strength in the BA, CEM, and MTA groups were 27.32±2, 9.09±1.16, and 10.25±1.6, respectively. Pairwise comparison showed significant differences between the three groups. Conclusion: This in vitro study showed that BA has the highest and CEM has the lowest flexural strength.Keywords: BioAggregate; CEM Cement; Flexural Strength; Mineral Trioxide Aggregate

    An Overview of the Epidemiologic, Diagnostic and Treatment Approaches of COVID-19: What do We Know?

    Get PDF
    Background: In late December 2019, a new infectious respiratory disease (COVID-19) was reported in a number of patients with a history of exposure to the Huanan seafood market in China. The World Health Organization officially announced the COVID-19 pandemic on March 11, 2020. Here, we provided an overview of the epidemiologic, diagnostic and treatment approaches associated with COVID-19. Methods: We reviewed the publications indexed in major biomedical databases by December 20, 2020 or earlier (updated on May 16, 2021). Search keywords included a combination of: COVID-19, Coronavirus disease 2019, SARS-CoV-2, Epidemiology, Prevention, Diagnosis, Vaccine, and Treatment. We also used available information about COVID-19 from valid sources such as WHO. Results and Conclusion: At the time of writing this review, while most of the countries authorized COVID-19 vaccines for emergency use starting December 8, 2020, there is no a definite cure for it. This review synthesizes current knowledge of virology, epidemiology, clinical symptoms, diagnostic approaches, common treatment strategies, novel potential therapeutic options for control and prevention of COVID-19 infection, available vaccines, public health and clinical implications

    Effect of two prophylaxis methods on adherence of Streptococcus mutans to microfilled composite resin and giomer surfaces

    Get PDF
    Objectives: Surface attributes of a restoration play an important role in adherence of plaque bacteria. Prophylaxis methods may be involved in modification of or damaging the restoration surface. The aim of the present study was to evaluate the effect of two prophylaxis methods on adherence of Streptococcus mutans to the surface of two restorative materials. Study design: A total of 60 specimens were prepared from each material; a microfilled composite resin (HelioProgress) and a giomer (Beautifil II). For each material, the specimens were randomly divided into three groups (n=20). Group 1: no prophylaxis treatment (control); Group 2: prophylaxis with pumice and rubber cup; Group 3: prophylaxis with air-powder polishing device (APD). The surfaces of selected specimens from each group were evaluated under a scanning electron microscope (SEM), and the surface topography formed by the two prophylaxis methods was determined by atomic force microscopy (AFM). Adherence of Streptococcus mutans to the surface of specimens was determined by the plate counting method following immersion in a bacterial innoculum for 4 hours, rinsing and sonication. Data were analyzed by two-way ANOVA and post hoc Tukey test for multiple comparisons. Statistical significance was set at P<0.05. Results: Bacterial adherence was significantly affected by both factors: restorative material type and prophylaxis method (P<0.0005). Mean bacterial adhesion was significantly higher in composite groups compared to corresponding giomer groups. Within each material, bacterial adherence was significantly lower in the control group compared to prophylaxis groups. Prophylaxis with pumice and rubber cup resulted in a significantly lower bacterial adherence compared to prophylaxis with APD. Conclusions: Based on the results of the present study, giomer specimens demonstrated lower bacterial adherence compared to composite resin specimens. In both materials, the highest bacterial adherence was observed with prophylaxis with APD, pumice and rubber cup and the control group, respectively. © Medicina Oral S. L

    Comparison of the Chemical Compositions and Antibacterial Activities of Two Iranian Mustard Essential Oils and Use of these Oils in Turkey Meats as Preservatives

    Get PDF
    Background and objective: Iranian mustard is cultivated in southern areas of Iran and used traditionally as natural preservative. Aims of the current study were identification and comparison of the chemical compositions and antibacterial activities of two Iranian mustard essential oils and assessment of these oils use for increasing the shelf life of turkey meats.Material and methods: Chemical compositions of two Iranian mustard essential oils were identified using gas chromatography-mass spectrometry and antibacterial activities of these oils were assessed against Salmonella typhimurium, Escherichia coli, Citrobacter freundii, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus and Enterococcus faecalis using disc diffusion and broth macrodilution assays. Inhibitory effects of the essential oils were assessed on growth of mesophilic psychrotrophic bacteria, yeasts and molds and sensory evaluation was carried out for the turkey meats.Results and conclusion: Results of GC-MS showed presence of bioactive constituents, especially allyl isothiocyanate (75.87-80.07%). All the bacterial growth, especially for Escherichia coli, was inhibited with inhibition zones of greater than 20 mm and minimum inhibitory and bactericidal concentrations of 0.156 mg ml-1. Treatment of turkey meat samples with the mustard essential oils significantly decreased the count of mesophilic psychrotrophic bacteria, yeasts and molds during 20 days of storage at 4°C ±1, compared to controls (P≤0.05). Over the time, the sensory score of the treated samples increased, compared to controls. Based on these findings, the Iranian mustard essential oils can be used as natural preservatives in foods.Conflict of interest: The authors declare no conflict of interest

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Increased antibiofilm and growth inhibitory effect of Imipenem/Cilastatin nanoliposomes against clinical Pseudomonas aeruginosa isolates

    No full text
    Abstract Numerous infections are linked to Pseudomonas aeruginosa. It is one of the major medical concerns because of virulence and antibiotic resistance. Antibiotic encapsulation in liposomes is a good strategy for controlling infections caused by this microorganism. Evaluation of anti-Pseudomonas aeruginosa effect of liposomal form of Imipenem/Cilastatin in vitro condition. By using the disk agar diffusion technique, the isolates’ pattern of antibiotic resistance was identified. The antibiotic was placed into the nanoliposome after it had been made using the thin layer and ethanol injection techniques. SEM and DLS were used to determine the size, shape, and zeta potential of the encapsulated drug form and the empty nanoliposome. Additionally, Imipenem/Cilastatin encapsulation in nanoliposomes was studied using FT-IR spectroscopy. In the microbial assay experiments the MIC, MBC and MBEC of liposomal and free drug forms were determined. The nanoparticles were spherical, with a diameter ranging from 30 to 39 nm, and the EE% in the thin layer and ethanol injection procedures were 97 and 98, respectively. Imipenem/Cilastatin nanoliposomes showed peaks at 3009 cm−1 and 1650 cm−1, demonstrating the thermodynamic stability for the chemical structure of the drug enclosed and validating the encapsulation of antibiotic in the nanoliposomes. When compared to free drug forms, nanoliposomes had lower MIC and MBC values in the majority of the isolates and had a greater ability to eradicate the biofilm formation. It was shown that the two nanoliposome preparation techniques were more efficient in 80% of the isolates, which had outcomes that were consistent with those of numerous other investigations. Overall, we demonstrated that the antibacterial activity of nanoliposomes was higher than that of the free drug form based on the evaluation of their MIC and MBC. Pharmaceutical nanoliposome techniques provide an excellent future perspective on how to manage microbial infections that are resistant to antibiotics. Graphical Abstrac

    Intelligent Service Selection in a Multi-Dimensional Environment of Cloud Providers for Internet of Things Stream Data through Cloudlets

    No full text
    The expansion of Internet of Things (IoT) services and the huge amount of data generated by different sensors signify the importance of cloud computing services such as Storage as a Service more than ever. IoT traffic imposes such extra constraints on the cloud storage service as sensor data preprocessing capability and load-balancing between data centers and servers in each data center. Furthermore, service allocation should be allegiant to the quality of service (QoS). In the current work, an algorithm is proposed that addresses the QoS in storage service allocation. The proposed hybrid multi-objective water cycle and grey wolf optimizer (MWG) considers different QoS objectives (e.g., energy, processing time, transmission time, and load balancing) in both the fog and cloud Layers, which were not addressed altogether. The MATLAB script is used to simulate and implement our algorithms, and services of different servers, e.g., Amazon, Dropbox, Google Drive, etc., are considered. The MWG has 7%, 13%, and 25% improvement, respectively, in comparison with multi-objective water cycle algorithm (MOWCA), k-means based GA (KGA), and non-dominated sorting genetic algorithm (NSGAII) in metric of spacing. Moreover, the MWG has 4%, 4.7%, and 7.3% optimization in metric of quality in comparison to MOWCA, KGA, and NSGAII, respectively. The new hybrid algorithm, MWG, not only yielded to the consideration of three objectives in service selection but also improved the performance compared to the works that considered one or two objective(s). The overall optimization shows that the MWG algorithm has 7.8%, 17%, and 21.6% better performance than MOWCA, KGA, and NSGAII in the obtained best result by considering different objectives, respectively

    Intelligent Service Selection in a Multi-Dimensional Environment of Cloud Providers for Internet of Things Stream Data through Cloudlets

    No full text
    The expansion of Internet of Things (IoT) services and the huge amount of data generated by different sensors signify the importance of cloud computing services such as Storage as a Service more than ever. IoT traffic imposes such extra constraints on the cloud storage service as sensor data preprocessing capability and load-balancing between data centers and servers in each data center. Furthermore, service allocation should be allegiant to the quality of service (QoS). In the current work, an algorithm is proposed that addresses the QoS in storage service allocation. The proposed hybrid multi-objective water cycle and grey wolf optimizer (MWG) considers different QoS objectives (e.g., energy, processing time, transmission time, and load balancing) in both the fog and cloud Layers, which were not addressed altogether. The MATLAB script is used to simulate and implement our algorithms, and services of different servers, e.g., Amazon, Dropbox, Google Drive, etc., are considered. The MWG has 7%, 13%, and 25% improvement, respectively, in comparison with multi-objective water cycle algorithm (MOWCA), k-means based GA (KGA), and non-dominated sorting genetic algorithm (NSGAII) in metric of spacing. Moreover, the MWG has 4%, 4.7%, and 7.3% optimization in metric of quality in comparison to MOWCA, KGA, and NSGAII, respectively. The new hybrid algorithm, MWG, not only yielded to the consideration of three objectives in service selection but also improved the performance compared to the works that considered one or two objective(s). The overall optimization shows that the MWG algorithm has 7.8%, 17%, and 21.6% better performance than MOWCA, KGA, and NSGAII in the obtained best result by considering different objectives, respectively
    corecore