7,549 research outputs found
Quantum interference and entanglement induced by multiple scattering of light
We report on the effects of quantum interference induced by transmission of
an arbitrary number of optical quantum states through a multiple scattering
medium. We identify the role of quantum interference on the photon correlations
and the degree of continuous variable entanglement between two output modes. It
is shown that the effect of quantum interference survives averaging over all
ensembles of disorder and manifests itself as increased photon correlations
giving rise to photon anti-bunching. Finally, the existence of continuous
variable entanglement correlations in a volume speckle pattern is predicted.
Our results suggest that multiple scattering provides a promising way of
coherently interfering many independent quantum states of light of potential
use in quantum information processing.Comment: 5 pages including 4 figure
Size-dependent nonlocal effects in plasmonic semiconductor particles
Localized surface plasmons (LSP) in semiconductor particles are expected to
exhibit spatial nonlocal response effects as the geometry enters the nanometer
scale. To investigate these nonlocal effects, we apply the hydrodynamic model
to nanospheres of two different semiconductor materials: intrinsic InSb and
-doped GaAs. Our results show that the semiconductors indeed display
nonlocal effects, and that these effects are even more pronounced than in
metals. In a InSb particle at , the LSP
frequency is blueshifted 35%, which is orders of magnitude larger than the
blueshift in a metal particle of the same size. This property, together with
their tunability, makes semiconductors a promising platform for experiments in
nonlocal effects.Comment: 7 pages, 3 figures, 1 table, corrected typos in text and figure
Two-fluid hydrodynamic model for semiconductors
The hydrodynamic Drude model (HDM) has been successful in describing the
optical properties of metallic nanostructures, but for semiconductors where
several different kinds of charge carriers are present, an extended theory is
required. We present a two-fluid hydrodynamic model for semiconductors
containing electrons and holes (from thermal or external excitation) or light
and heavy holes (in -doped materials). The two-fluid model predicts the
existence of two longitudinal modes, an acoustic and an optical, whereas only
an optical mode is present in the HDM. By extending nonlocal Mie theory to two
plasmas, we are able to simulate the optical properties of two-fluid
nanospheres and predict that the acoustic mode gives rise to peaks in the
extinction spectra that are absent in the HDM.Comment: Accepted in PRB. 17 pages, 9 figures, 1 tabl
Experimental investigation of cut-off phenomena in non-linear photonic crystal fibers
The modal cut-off is investigated experimentally in a series of high quality
non-linear photonic crystal fibers. We demonstrate a suitable measurement
technique to determine the cut-off wavelength and verify it by inspecting the
near field of the modes that may be excited below and above the cut-off. We
observe a double peak structure in the cut-off spectra, which is attributed to
a splitting of the higher order modes. The cut-off is measured for seven
different fiber geometries with different pitches and relative hole size, and a
very good agreement with recent theoretical work is found.Comment: 3 pages including 1 table and 4 figures. Accepted for Optics Letter
Improved large-mode area endlessly single-mode photonic crystal fibers
We numerically study the possibilities for improved large-mode area endlessly
single mode photonic crystal fibers for use in high-power delivery
applications. By carefully choosing the optimal hole diameter we find that a
triangular core formed by three missing neighboring air holes considerably
improves the mode area and loss properties compared to the case with a core
formed by one missing air hole. In a realized fiber we demonstrate an
enhancement of the mode area by ~30 % without a corresponding increase in the
attenuation.Comment: 3 pages including 3 eps-figures. Accepted for Optics Letter
Mode-Field Radius of Photonic Crystal Fibers Expressed by the V-parameter
We numerically calculate the equivalent mode-field radius of the fundamental
mode in a photonic crystal fiber (PCF) and show that this is a function of the
V-parameter only and not the relative hole size. This dependency is similar to
what is found for graded-index standard fibers and we furthermore show that the
relation for the PCF can be excellently approximated with the same general
mathematical expression. This is to our knowledge the first semi-analytical
description of the mode-field radius of a PCF.Comment: Accepted for Opt. Let
Effects of blood withdrawal and reinfusion on biomarkers of erythropoiesis in humans: Implications for anti-doping strategies
To discriminate autologous blood doping procedures from normal conditions, we examined the hematological response to blood withdrawal and reinfusion. We found that biomarkers of erythropoiesis are primarily affected in the anemic period. Therefore, individual variations in [Hb] exceeding 15% between samples obtained shortly before any major competition would be indicative of autologous blood manipulation
Low-loss photonic crystal fibers for transmission systems and their dispersion properties
We report on a single-mode photonic crystal fiber with attenuation and
effective area at 1550 nm of 0.48 dB/km and 130 square-micron, respectively.
This is, to our knowledge, the lowest loss reported for a PCF not made from VAD
prepared silica and at the same time the largest effective area for a low-loss
(< 1 dB/km) PCF. We briefly discuss the future applications of PCFs for data
transmission and show for the first time, both numerically and experimentally,
how the group velocity dispersion is related to the mode field diameterComment: 5 pages including 3 figures + 1 table. Accepted for Opt. Expres
- …