4,325 research outputs found

    Frequency response in surface-potential driven electro-hydrodynamics

    Full text link
    Using a Fourier approach we offer a general solution to calculations of slip velocity within the circuit description of the electro-hydrodynamics in a binary electrolyte confined by a plane surface with a modulated surface potential. We consider the case with a spatially constant intrinsic surface capacitance where the net flow rate is in general zero while harmonic rolls as well as time-averaged vortex-like components may exist depending on the spatial symmetry and extension of the surface potential. In general the system displays a resonance behavior at a frequency corresponding to the inverse RC time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a 1/omega^2 power law for surface potentials with either an even or an odd symmetry. Below resonance we also find a power law omega^alpha with alpha being positive and dependent of the properties of the surface potential. Comparing a tanh potential and a sech potential we qualitatively find the same slip velocity, but for the below-resonance frequency response the two potentials display different power law asymptotics with alpha=1 and alpha~2, respectively.Comment: 4 pages including 1 figure. Accepted for PR

    A real-space grid implementation of the Projector Augmented Wave method

    Get PDF
    A grid-based real-space implementation of the Projector Augmented Wave (PAW) method of P. E. Blochl [Phys. Rev. B 50, 17953 (1994)] for Density Functional Theory (DFT) calculations is presented. The use of uniform 3D real-space grids for representing wave functions, densities and potentials allows for flexible boundary conditions, efficient multigrid algorithms for solving Poisson and Kohn-Sham equations, and efficient parallelization using simple real-space domain-decomposition. We use the PAW method to perform all-electron calculations in the frozen core approximation, with smooth valence wave functions that can be represented on relatively coarse grids. We demonstrate the accuracy of the method by calculating the atomization energies of twenty small molecules, and the bulk modulus and lattice constants of bulk aluminum. We show that the approach in terms of computational efficiency is comparable to standard plane-wave methods, but the memory requirements are higher.Comment: 13 pages, 3 figures, accepted for publication in Physical Review

    Transport coefficients for electrolytes in arbitrarily shaped nano and micro-fluidic channels

    Full text link
    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the hydraulic and electrical transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the geometrical correction factor for the Hagen-Poiseuille part of the problem. In particular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.Comment: 13 pages including 4 figures and 1 table. Typos corrected. Accepted for NJ

    Coupled-resonator optical waveguides: Q-factor and disorder influence

    Full text link
    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder, imperfections, and a finite Q value may heavily affect the otherwise attractive properties of CROWs. We show how finite a Q factor limits the maximum attainable group delay time; the group index is limited by Q, but equally important the feasible device length is itself also limited by damping resulting from a finite Q. Adding the additional effects of disorder to this picture, limitations become even more severe due to destructive interference phenomena, eventually in the form of Anderson localization. Simple analytical considerations demonstrate that the maximum attainable delay time in CROWs is limited by the intrinsic photon lifetime of a single resonator.Comment: Accepted for Opt. Quant. Electro

    Micro- vs. macro-phase separation in binary blends of poly(styrene)-poly(isoprene) and poly(isoprene)-poly(ethylene oxide) diblock copolymers

    Get PDF
    In this paper we present an experimentally determined phase diagram of binary blends of the diblock copolymers poly(styrene)-poly(isoprene) and poly(isoprene)-poly(ethylene oxide). At high temperatures, the blends form an isotropic mixture. Upon lowering the temperature, the blend macro-phase separates before micro-phase separation occurs. The observed phase diagram is compared to theoretical predictions based on experimental parameters. In the low-temperature phase the crystallisation of the poly(ethylene oxide) block influences the spacing of the ordered phase

    Propagation of Light in Photonic Crystal Fibre Devices

    Full text link
    We describe a semi-analytical approach for three-dimensional analysis of photonic crystal fibre devices. The approach relies on modal transmission-line theory. We offer two examples illustrating the utilization of this approach in photonic crystal fibres: the verification of the coupling action in a photonic crystal fibre coupler and the modal reflectivity in a photonic crystal fibre distributed Bragg reflector.Comment: 15 pages including 7 figures. Accepted for J. Opt. A: Pure Appl. Op

    Andreev magnetotransport in low-dimensional proximity structures: Spin-dependent conductance enhancement

    Get PDF
    We study the excess conductance due to the superconducting proximity effect in a ballistic two-dimensional electron system subject to an in-plane magnetic field. We show that under certain conditions the interplay of the Zeeman spin splitting and the effect of a screening supercurrent gives rise to a spin-selective Andreev enhancement of the conductance and anomalies in its voltage, temperature and magnetic field characteristics. The magnetic-field influence on Andreev reflection is discussed in the context of using superconducting hybrid junctions for spin detection.Comment: 4 pages, 5 figure
    • …
    corecore