34 research outputs found

    An Efficient Group Key Management Using Code for Key Calculation for Simultaneous Join/Leave: CKCS

    Full text link
    This paper presents an efficient group key management protocol, CKCS (Code for Key Calculation in Simultaneous join/leave) for simultaneous join/leave in secure multicast. This protocol is based on logical key hierarchy. In this protocol, when new members join the group simultaneously, server sends only the group key for those new members. Then, current members and new members calculate the necessary keys by node codes and one-way hash function. A node code is a random number which is assigned to each key to help users calculate the necessary keys. Again, at leave, the server just sends the new group key to remaining members. The results show that CKCS reduces computational and communication overhead, and also message size in simultaneous join/leave.Comment: 18 pages, 16 figures, 4 table

    How Reactivation of SARS-CoV-2 in Astronauts with Dysregulated Immune Systems Can Negatively Affect the Odds of Success in Future Space Missions

    Get PDF
    We have previously reported that during future space missions the risk of severe COVID-19 infection will be a cardinal issue that needs careful attention. Our studies show that even with the most reliable pre-mission screening and quarantine strategies, astronauts with a latent (hidden, inactive, or dormant) SARS-CoV-2 infection might be sent to space. Given this consideration, an asymptomatic individual with dormant SARS-CoV-2 infection may successfully pass all the pre-launch medical tests. Then during a space mission such as a journey to Mars or beyond, when the immune system of these astronauts starts to weaken, the dormant infection may progress to a severe infection that possibly affects the chance of the mission’s success. The effects of microgravity and the elevated space radiation are two key factors that should be evaluated. Furthermore, the limited size of the spacecraft, the proximity of crew members during flight operations, spacecraft atmospheric composition, limited exercise capability, effects of viral response to space radiation, and uncertainty in the likelihood of the virus to mutate and evolve during a space mission merit additional study

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture \sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA

    Prevalence of Cannabis Lifetime Use in Iranian High School and College Students: A Systematic Review, Meta-Analyses,and Meta-Regression

    Get PDF
    Cannabis is the most widely used substance in the world. This study aimed to estimate the prevalence of cannabis lifetime use (CLU) in high school and college students of Iran and also to determine factors related to changes in prevalence. A systematic review of literature on cannabis use in Iran was conducted according to MOOSE guideline. Domestic scientific databases, PubMed/Medline, ISI Web of Knowledge, and Google Scholar, relevant reference lists, and relevant journals were searched up to April, 2014. Prevalences were calculated using the variance stabilizing double arcsine transformation and confidence intervals (CIs) estimated using the Wilson method. Heterogeneity was assessed by Cochran's Q statistic and I-2 index and causes of heterogeneity were evaluated using meta-regression model. In electronic database search, 4,000 citations were retrieved, producing a total of 33 studies. CLU was reported with a random effects pooled prevalence of 4.0 (95 CI = 3.0 to 5.0). In subgroups of high school and college students, prevalences were 5.0 (95 CI = 3.0 to -7.0) and 2.0 (95 CI = 2.0 to -3.0), respectively. Meta-regression model indicated that prevalence is higher in college students (beta = 0.089, p < .001), male gender (beta = 0.017, p < .001), and is lower in studies with sampling versus census studies (beta = -0.096, p < .001). This study reported that prevalence of CLU in Iranian students are lower than industrialized countries. In addition, gender, level of education, and methods of sampling are highly associated with changes in the prevalence of CLU across provinces

    Dental caries in primary and permanent teeth in children's worldwide, 1995 to 2019: a systematic review and meta-analysis

    Get PDF
    Background: Early childhood caries (ECC) is a type of dental caries in the teeth of infants and children that is represented as one of the most prevalent dental problems in this period. Various studies have reported different types of prevalence of dental caries in primary and permanent teeth in children worldwide. However, there has been no comprehensive study to summarize the results of these studies in general, so this study aimed to determine the prevalence of dental caries in primary and permanent teeth in children in different continents of the world during a systematic review and meta-analysis. Methods: In this review study, articles were extracted by searching in the national and international databases of SID, MagIran, IranMedex, IranDoc, Cochrane, Embase, ScienceDirect, Scopus, PubMed, and Web of Science (ISI) between 1995 and December 2019. Random effects model was used for analysis and heterogeneity of studies was evaluated by using the I2 index. Data were analyzed by using the Comprehensive Meta-Analysis (Version 2) software. Findings: In this study, a total of 164 articles (81 articles on the prevalence of dental caries in primary teeth and 83 articles on the prevalence of dental caries in permanent teeth) were entered the meta-analysis. The prevalence of dental caries in primary teeth in children in the world with a sample size of 80,405 was 46.2% (95% CI: 41.6–50.8%), and the prevalence of dental caries in permanent teeth in children in the world with a sample size of 1,454,871 was 53.8% (95% CI: 50–57.5%). Regarding the heterogeneity on the basis of meta-regression analysis, there was a significant difference in the prevalence of dental caries in primary and permanent teeth in children in different continents of the world. With increasing the sample size and the year of study, dental caries in primary teeth increased and in permanent teeth decreased. Conclusion: The results of this study showed that the prevalence of primary and permanent dental caries in children in the world was found to be high. Therefore, appropriate strategies should be implemented to improve the aforementioned situation and to troubleshoot and monitor at all levels by providing feedback to hospitals

    Can Adaptive Response and Evolution Make Survival of Extremophile Bacteria Possible on Mars?

    No full text
    The humidity on the surface of the red planet, Mars, drops steeply during the daytime as the temperature rises. In this situation, Martian microorganisms should have the capability to cope with desiccation. Extremophiles are microorganisms that are capable of surviving in extreme environmental conditions. It has previously been shown that a pre-exposure to low levels of either ionizing or non-ionizing radiation can induce resistance against subsequent exposure to high levels of different stressors (e.g. high doses of ionizing radiation) in a wide variety of living systems. Moreover, it has been shown that E. coli bacteria repeatedly exposed to a dose needed for 1% survival, and increasing the dose each time due to increased radioresistance for the same survival (1%), generates extremely radioresistant bacteria through directed evolution. Mortazavi et al. have warned that in a similar manner with extremophiles such as Deinococcus radiodurans, it would be very likely that this type of human-directed radioresistance makes E. coli bacteria resistant to all physical and chemical agents (generation of serious life-threatening micro-organisms). There are reports about the possibility of the existence of microbes in the salty puddles of Mars. On Mars, with its thin atmosphere and lack of the protective magnetic field, higher levels of space radiation cause more genetic mutations. Interestingly, these mutations in bacteria, which can make them resistant against radiation, can also make them resistant against desiccation. Moreover, the adaptive response to radiation in bacteria might play an important role in this process. As stated in a NASA report, the cells in the astronauts will be traversed by multiple protons before exposure to HZE particles. This sequential exposure might significantly increase the resistance against radiation. The same exposure in bacteria might not only induce resistance against the high levels of damage caused by HZEs, but also to other life-threatening factors for bacteria such as desiccation. In this paper, the current understanding of extremophiles and their capability of surviving in extreme environmental conditions as well as current findings about radioadaptive responses in bacteria will be discussed

    Does Exposure of Astronauts\u27 Brains to High-LET Radiation in Deep Space Threaten the Success of the Mission?

    No full text
    Astronauts\u27 exposure to radiation is different from exposure to radiation on Earth. Besides cancer, cardiovascular disease and acute radiation syndrome, there are concerns over the potential behavioral and cognitive impairments caused by exposure of the astronauts\u27 central nervous system to high levels of space radiation. Therefore, potential behavioral and cognitive i mpairments caused by astronauts\u27 brains exposure to high levels of space radiation and the possibility of developing dementia and other motor neuron diseases are getting more attention. As NASA is interested in studies on radium deposition in human brain, and exposure of the brain to high linear energy transfer (LET) alpha particles, we have assessed the cognitive effects of long-term exposure of human brain to alpha particles which partly mimics astronauts\u27 exposure to high charge and energy (HZE) particles during upcoming mars missions. Dr. John Boice, President of NCRP, and his colleagues\u27 have stated that human brain exposed for years to alpha particles on Earth may be more relevant to a Mars mission in contrast with the mouse brain exposed to heavy ions for a few minutes. Interestingly, both Boice and NASA did not pay enough attention to this fact that radium as well as many other alpha emitters tend to accumulate in the bone, and the alpha particles whose energies are typically -5 MeV have a very short range (maximum lOs of um), so the radiation dose due to the alpha emitters would be localized to volumes near the cranium rather than being uniformly distributed throughout the cerebral and cerebellar parenchyma. Extraordinary high levels of Ra-226 have previously been reported in high background radiation areas of Ramsar, where people are consuming locally grown foods. In this paper, we will present data which provide a human brain radiation exposure analogue for upcoming Mars missions. Normally the dose to the functional parts of the brain are not likely to be significant, even with higher uptakes of the radium or other alpha-emitting isotopes in the cranium. Therefore, only residents with calcium-rich diet were selected for the study. Measurements of background gamma radiation was performed in their bedrooms, dining rooms, vegetable yards and gardens with citrus fruit trees of the dwellings in areas with high levels of Ra-226 in the soil and at a nearby control area with the same socio-economic factors. Moreover, the food frequency, reaction time, working memory and computational abilities as well as the Radium Ingestion Index (RII) of 47 participants (22 males and 24 females) from the hot areas, where the annual radiation absorbed dose from background radiation is up to 260 mSv/y, were studied, and the same things were studied for 17 participants (4 males and 13 females) from a nearby normal background radiation area with the same socioeconomic factors as at the hot areas. Our study showed that exposure of human brain to high LET particles did not affect the working memory. However, individuals with higher levels of radium ingestion had significantly increased reaction times. The increased reaction time in individuals with higher exposure levels to alpha particles emitted from ingested Ra-226 is an important finding, since similar conditions might occur in deep space, when astronauts\u27 brain cells are exposed to HZE particles. As the astronauts face numerous challenges in isolated and confined space environment, they should be able to respond quickly to different hazards. However, further studies are needed to verify if the fmdings in high radiation dose areas in Ramsar are relevant for deep space mission
    corecore