49 research outputs found

    Artificial Antigen Presenting Cells With Preclustered anti-CD28/-CD3/-LFA-1 Monoclonal Antibodies Are Highly Effective To Induce The Ex-Vivo Expansion Of Functional Human Antitumor T Cells

    Get PDF
    Effective adoptive T cell therapy requires the _ex vivo_ generation of functional T lymphocytes with a long lifespan _in vivo_. We evaluated _in vitro_ T cell expansion by artificial antigen presenting cells (aAPC) generated with activating (human anti-CD3), co-stimulating (human anti-CD28) and adhesion (human anti-LFA-1) monoclonal antibodies pre-clustered in microdomains (MDs) held by a liposome scaffold. The co-localization of T cell ligands in MDs and the targeting of an adhesion protein, increasing the efficiency of immunological synapse formations, represent the novelties of our system. These aAPCs allowed increased expansion of polyclonal CD4^+^ and CD8^+^ T cells and of tumor antigen-specific CD8^+^ T cells compared to anti-CD28- and anti-CD3-coated microbeads and to immobilized anti-CD3. These aAPCs allowed the generation of T cells displaying an immunophenotype consistent with long-term _in vivo_ persistence, without increasing the frequency of regulatory T cells. Finally, our aAPCs proved to be suitable for large scale T cell expansion required in immunotherapy trials

    An Expanded Peripheral T Cell Population to a Cytotoxic T Lymphocyte (Ctl)-Defined, Melanocyte-Specific Antigen in Metastatic Melanoma Patients Impacts on Generation of Peptide-Specific Ctls but Does Not Overcome Tumor Escape from Immune Surveillance in Metastatic Lesions

    Get PDF
    It is not known if immune response to T cell–defined human histocompatibility leukocyte antigen (HLA) class I–restricted melanoma antigens leads to an expanded peripheral pool of T cells in all patients, affects cytotoxic T lymphocyte (CTL) generation, and correlates with anti-tumor response in metastatic lesions. To this end, a limiting dilution analysis technique was developed that allowed us to evaluate the same frequency of peptide-specific T cells as by staining T cells with HLA–peptide tetrameric complexes. In four out of nine patients, Melan-A/Mart-127–35–specific CTL precursors (CTLp) were ≥1/2,000 peripheral blood lymphocytes and found mostly or only in the CD45RO+ memory T cell subset. In the remaining five patients, a low (<1/40,000) peptide-specific CTLp frequency was measured, and the precursors were only in the CD45RA+ naive T cell subset. Evaluation of CTL effector frequency after bulk culture indicated that peptide-specific CTLs could be activated in all patients by using professional antigen-presenting cells as dendritic cells, but CTLp frequency determined the kinetics of generation of specificity and the final number of effectors as evaluated by both limiting dilution analysis and staining with HLA-A*0201–Melan-A/Mart-1 tetrameric complexes. Immunohistochemical analysis of 26 neoplastic lesions from the nine patients indicated absence of tumor regression in most instances, even in patients with an expanded peripheral T cell pool to Melan-A/Mart-1 and whose neoplastic lesions contained a high frequency of tetramer-positive Melan-A/Mart-1–specific T cells. Furthermore, frequent lack of a “brisk” or “nonbrisk” CD3+CD8+ T cell infiltrate or reduced/absent Melan-A/Mart-1 expression in several lesions and lack of HLA class I antigens were found in some instances. Thus, expansion of peripheral immune repertoire to Melan-A/Mart-1 takes place in some metastatic patients and leads to enhanced CTL induction after antigen-presenting cell–mediated selection, but, in most metastatic lesions, it does not overcome tumor escape from immune surveillance

    Gut Microbiota, Metabolome, and Body Composition Signatures of Response to Therapy in Patients with Advanced Melanoma

    Get PDF
    Despite the recent breakthroughs in targeted and immunotherapy for melanoma, the overall survival rate remains low. In recent years, considerable attention has been paid to the gut microbiota and other modifiable patient factors (e.g., diet and body composition), though their role in influencing therapeutic responses has yet to be defined. Here, we characterized a cohort of 31 patients with unresectable IIIC-IV-stage cutaneous melanoma prior to initiation of targeted or first-line immunotherapy via the following methods: (i) fecal microbiome and metabolome via 16S rRNA amplicon sequencing and gas chromatography/mass spectrometry, respectively, and (ii) anthropometry, body composition, nutritional status, physical activity, biochemical parameters, and immunoprofiling. According to our data, patients subsequently classified as responders were obese (i.e., with high body mass index and high levels of total, visceral, subcutaneous, and intramuscular adipose tissue), non-sarcopenic, and enriched in certain fecal taxa (e.g., Phascolarctobacterium) and metabolites (e.g., anethole), which were potentially endowed with immunostimulatory and oncoprotective activities. On the other hand, non-response was associated with increased proportions of Streptococcus, Actinomyces, Veillonella, Dorea, Fusobacterium, higher neutrophil levels (and a higher neutrophil-to-lymphocyte ratio), and higher fecal levels of butyric acid and its esters, which also correlated with decreased survival. This exploratory study provides an integrated list of potential early prognostic biomarkers that could improve the clinical management of patients with advanced melanoma, in particular by guiding the design of adjuvant therapeutic strategies to improve treatment response and support long-term health improvement

    Recurrent, founder and hypomorphic variants contribute to the genetic landscape of Joubert syndrome

    Get PDF
    Background Joubert syndrome (JS) is a neurodevelopmental ciliopathy characterised by a distinctive mid-hindbrain malformation, the 'molar tooth sign'. Over 40 JS-associated genes are known, accounting for two-thirds of cases.Methods While most variants are novel or extremely rare, we report on 11 recurring variants in seven genes, including three known 'founder variants' in the Ashkenazi Jewish, Hutterite and Finnish populations. We evaluated variant frequencies in similar to 550 European patients with JS and compared them with controls (&gt;15 000 Italian plus gnomAD), and with an independent cohort of similar to 600 JS probands from the USA.Results All variants were markedly enriched in the European JS cohort compared with controls. When comparing allele frequencies in the two JS cohorts, the Ashkenazim founder variant (TMEM216 c.218G&gt;T) was significantly enriched in American compared with European patients with JS, while MKS1 c.1476T&gt;G was about 10 times more frequent among European JS. Frequencies of other variants were comparable in the two cohorts. Genotyping of several markers identified four novel European founder haplotypes. Two recurrent variants (MKS1 c.1476T&gt;G and KIAA0586 c.428delG), have been detected in homozygosity in unaffected individuals, suggesting they could act as hypomorphic variants. However, while fibroblasts from a MKS1 c.1476T&gt;G healthy homozygote showed impaired ability to form primary cilia and mildly reduced ciliary length, ciliary parameters were normal in cells from a KIAA0586 c.428delG healthy homozygote.Conclusion This study contributes to understand the complex genetic landscape of JS, explain its variable prevalence in distinct geographical areas and characterise two recurrent hypomorphic variants

    Neutralizing antibodies to Omicron after the fourth SARS-CoV-2 mRNA vaccine dose in immunocompromised patients highlight the need of additional boosters

    Get PDF
    IntroductionImmunocompromised patients have been shown to have an impaired immune response to COVID-19 vaccines.MethodsHere we compared the B-cell, T-cell and neutralizing antibody response to WT and Omicron BA.2 SARS-CoV-2 virus after the fourth dose of mRNA COVID-19 vaccines in patients with hematological malignancies (HM, n=71), solid tumors (ST, n=39) and immune-rheumatological (IR, n=25) diseases. The humoral and T-cell responses to SARS-CoV-2 vaccination were analyzed by quantifying the anti-RBD antibodies, their neutralization activity and the IFN-Îł released after spike specific stimulation.ResultsWe show that the T-cell response is similarly boosted by the fourth dose across the different subgroups, while the antibody response is improved only in patients not receiving B-cell targeted therapies, independent on the pathology. However, 9% of patients with anti-RBD antibodies did not have neutralizing antibodies to either virus variants, while an additional 5.7% did not have neutralizing antibodies to Omicron BA.2, making these patients particularly vulnerable to SARS-CoV-2 infection. The increment of neutralizing antibodies was very similar towards Omicron BA.2 and WT virus after the third or fourth dose of vaccine, suggesting that there is no preferential skewing towards either virus variant with the booster dose. The only limited step is the amount of antibodies that are elicited after vaccination, thus increasing the probability of developing neutralizing antibodies to both variants of virus.DiscussionThese data support the recommendation of additional booster doses in frail patients to enhance the development of a B-cell response directed against Omicron and/or to enhance the T-cell response in patients treated with anti-CD20

    Immune Escape Mechanisms in Non Small Cell Lung Cancer

    No full text
    Development of strong immune evasion has been traditionally associated with the late stages of solid tumor progression, since advanced cancers are more likely to have reached the third phase of the immunoediting process. However, by integrating a variety of approaches, evidence for active immune escape mechanisms has been found even in the pre-invasive lesions that later progress to the main NSCLC histotypes. Pre-invasive lesions of adenocarcinoma (LUAD) and of squamous cell carcinoma (LUSC) can show impaired antigen presentation, loss of heterozygosity at the Human Leukocyte Antigen (HLA) region, neoantigen silencing, activation of immune checkpoints, altered TH1/TH2 cytokine ratios, and immune contexture evolution. Analysis of large panels of LUAD vs. LUSC, of early stage NSCLC vs. normal lung tissue, of specific molecular subsets of NSCLC, and of distinct regions within the same tumor, indicates that all these processes of immune escape continue to evolve in the invasive stage of NSCLC, are associated with inter- and intra-tumor heterogeneity, and contribute to resistance to therapy by immune checkpoint blockade (ICB). In this review, we will discuss the most recent evidence on immune escape mechanisms developing from the precursor to invasive stage in NSCLC, and the contribution of immune evasion to resistance to ICB in lung cancer
    corecore