38 research outputs found

    Optical Control of Glycerolipids and Sphingolipids

    Get PDF
    Glycerolipids, Sphingolipids, and Sterols are the three major classes of membrane lipids. Both glycerolipids and sphingolipids are comprised of combinations of polar headgroups and fatty acid tails. The fatty acid tail can be chemically modified with an azobenzene photoswitch giving rise to photoswitchable lipids. This approach has yielded a number of photopharmacological tools that allow to control various aspects of lipid assembly, metabolism, and physiology with light

    High-temperature small-scale fracture mechanics and plasticity of a hardcoating system

    Get PDF
    Forging and cutting tools for high-temperature applications are often protected using hard nanostructured ceramic coatings. While a moderate amount of knowledge exists for material properties at room temperatures, significantly less is known about the system constituents at the elevated temperatures generated during service. For rational engineering design of such systems, it is therefore important to have methodologies for testing these materials to understand their properties under such conditions. Additionally, small-scale mechanical testing is of inherent importance for thin-films systems and materials subject to surface modification or treatment as for plasma nitrided steels. In this work, we present results on both the hard ceramic coating and the nitrided steel substrate using in situ micro-mechanical measurements at temperatures to 500 °C. The fracture and plastic yield behavior of FIB milled micro-pillars of plasma-nitrided tool steel was first investigated using in situ compression experiments. It was found that the yield strength of nitrided steel is particularly sensitive to temperatures within the service range. Elevated temperature led to significant softening of the nitrided steel and transition from slip-based to more ductile plastic flow. A 70% reduction in yield stress was observed when transitioning from room-temperature to 500 °C, which was then recovered upon cooling back to RT indicating a mechanistic activation at high temperature. The fracture toughness behavior of a hard CrN coating was then investigated using various micro-geometries and notching parameters. Toughness measurements at high temperatures highlighted the profound effect of the notching ion during small-scale fracture measurements. It was found that gallium ion implantation led to significant toughening of CrN, based on gallium dosage experiments and alternative notching using both xenon and helium sources. The effect of different notching ions was additionally understood through Monte Carlo simulations of energetic ion interactions in a dense ceramic matrix

    Generating FAIR research data in experimental tribology

    Get PDF
    Solutions for the generation of FAIR (Findable, Accessible, Interoperable, and Reusable) data and metadata in experimental tribology are currently lacking. Nonetheless, FAIR data production is a promising path for implementing scalable data science techniques in tribology, which can lead to a deeper understanding of the phenomena that govern friction and wear. Missing community-wide data standards, and the reliance on custom workflows and equipment are some of the main challenges when it comes to adopting FAIR data practices. This paper, first, outlines a sample framework for scalable generation of FAIR data, and second, delivers a showcase FAIR data package for a pin-on-disk tribological experiment. The resulting curated data, consisting of 2,008 key-value pairs and 1,696 logical axioms, is the result of (1) the close collaboration with developers of a virtual research environment, (2) crowd-sourced controlled vocabulary, (3) ontology building, and (4) numerous – seemingly – small-scale digital tools. Thereby, this paper demonstrates a collection of scalable non-intrusive techniques that extend the life, reliability, and reusability of experimental tribological data beyond typical publication practices

    Optical Control of Lysophosphatidic Acid Signaling

    No full text

    Direct Modulators of K-Ras-Membrane Interactions.

    No full text

    Mapping the Azolog Space Enables the Optical Control of New Biological Targets

    Get PDF
    Photopharmacology relies on molecules that change their biological activity upon irradiation. Many of these are derived from known drugs by replacing their core with an isosteric azobenzene photoswitch (azologization). The question is how many of the known bioactive ligands could be addressed in such a way. Here, we systematically assess the space of molecules amenable to azologization from databases of bioactive molecules (DrugBank, PDB, CHEMBL) and the Cambridge Structural Database. Shape similarity scoring functions (3DAPfp) and analyses of dihedral angles are employed to quantify the structural homology between a bioactive molecule and the cis or trans isomer of its corresponding azolog (“azoster”) and assess which isomer is likely to be active. Our analysis suggests that a very large number of bioactive ligands (>40 000) is amenable to azologization and that many new biological targets could be addressed with photopharmacology. N-Aryl benzamides, 1,2-diarylethanes, and benzyl phenyl ethers are particularly suited for this approach, while benzylanilines and sulfonamides appear to be less well-matched. On the basis of our analysis, the majority of azosters are expected to be active in their trans form. The broad applicability of our approach is demonstrated with photoswitches that target a nuclear hormone receptor (RAR) and a lipid processing enzyme (LTA4 hydrolase)
    corecore