159 research outputs found

    Axial instability of rotating relativistic stars

    Get PDF
    Perturbations of rotating relativistic stars can be classified by their behavior under parity. For axial perturbations (r-modes), initial data with negative canonical energy is found with angular dependence eimϕe^{im\phi} for all values of m≥2m\geq 2 and for arbitrarily slow rotation. This implies instability (or marginal stability) of such perturbations for rotating perfect fluids. This low mm-instability is strikingly different from the instability to polar perturbations, which sets in first for large values of mm. The timescale for the axial instability appears, for small angular velocity Ω\Omega, to be proportional to a high power of Ω\Omega. As in the case of polar modes, viscosity will again presumably enforce stability except for hot, rapidly rotating neutron stars. This work complements Andersson's numerical investigation of axial modes in slowly rotating stars.Comment: Latex, 18 pages. Equations 84 and 85 are corrected. Discussion of timescales is corrected and update

    Relativistic precession around rotating neutron stars: Effects due to frame-dragging and stellar oblateness

    Get PDF
    General relativity predicts that a rotating body produces a frame-dragging (or Lense-Thirring) effect: the orbital plane of a test particle in a non-equatorial orbit precesses about the body's symmetry axis. In this paper we compute the precession frequencies of circular orbits around rapidly rotating neutron stars for a variety of masses and equations of state. The precession frequencies computed are expressed as numerical functions of the orbital frequency observed at infinity. The post-Newtonian expansion of the exact precession formula is examined to identify the relative magnitudes of the precession caused by the Lense-Thirring effect, the usual Newtonian quadrupole effect and relativistic corrections. The first post-Newtonian correction to the Newtonian quadrupole precession is derived in the limit of slow rotation. We show that the post-Newtonian precession formula is a good approximation to the exact precession close to the neutron star in the slow rotation limit (up to \sim 400 Hz in the present context). The results are applied to recent RXTE observations of neutron star low-mass X-ray binaries, which display kHz quasi-periodic oscillations and, within the framework of beat frequency models, allow the measurement of both the neutron star spin frequency and the Keplerian frequency of the innermost ring of matter in the accretion disk around it. For a wide range of realistic equations of state, we find that the predicted precession frequency of this ring is close to one half of the low-frequency (\sim 20 - 35 Hz) quasi-periodic oscillations seen in several Atoll sources.Comment: 35 pages including 10 figures and 6 tables. To appear in the Astrophysical Journa

    Quantum Effects in Black Hole Interiors

    Get PDF
    The Weyl curvature inside a black hole formed in a generic collapse grows, classically without bound, near to the inner horizon, due to partial absorption and blueshifting of the radiative tail of the collapse. Using a spherical model, we examine how this growth is modified by quantum effects of conformally coupled massless fields.Comment: 13 pages, 1 figure (not included), RevTe

    Hydrostatic Expansion and Spin Changes During Type I X-Ray Bursts

    Get PDF
    We present calculations of the spin-down of a neutron star atmosphere due to hydrostatic expansion during a Type I X-ray burst. We show that (i) Cumming and Bildsten overestimated the spin-down of rigidly-rotating atmospheres by a factor of two, and (ii) general relativity has a small (5-10%) effect on the angular momentum conservation law. We rescale our results to different neutron star masses, rotation rates and equations of state, and present some detailed rotational profiles. Comparing with recent observations of large frequency shifts in MXB 1658-298 and 4U 1916-053, we find that the spin-down expected if the atmosphere rotates rigidly is a factor of two to three less than the observed values. If differential rotation is allowed to persist, we find that the upper layers of the atmosphere spin down by an amount comparable to the observed values; however, there is no compelling reason to expect the observed spin frequency to be that of only the outermost layers. We conclude that hydrostatic expansion and angular momentum conservation alone cannot account for the largest frequency shifts observed during Type I bursts.Comment: Submitted to the Astrophysical Journal (13 pages, including 4 figures

    Gravitational Radiation Instability in Hot Young Neutron Stars

    Get PDF
    We show that gravitational radiation drives an instability in hot young rapidly rotating neutron stars. This instability occurs primarily in the l=2 r-mode and will carry away most of the angular momentum of a rapidly rotating star by gravitational radiation. On the timescale needed to cool a young neutron star to about T=10^9 K (about one year) this instability can reduce the rotation rate of a rapidly rotating star to about 0.076\Omega_K, where \Omega_K is the Keplerian angular velocity where mass shedding occurs. In older colder neutron stars this instability is suppressed by viscous effects, allowing older stars to be spun up by accretion to larger angular velocities.Comment: 4 Pages, 2 Figure

    Measuring the neutron star equation of state using X-ray timing

    Get PDF
    One of the primary science goals of the next generation of hard X-ray timing instruments is to determine the equation of state of the matter at supranuclear densities inside neutron stars, by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modelling. The flux we observe from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, giving rise to a pulsation. Information about mass and radius is encoded into the pulse profile via relativistic effects, and tight constraints on mass and radius can be obtained. The second technique involves characterising the spin distribution of accreting neutron stars. The most rapidly rotating stars provide a very clean constraint, since the mass-shedding limit is a function of mass and radius. However the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasi-periodic oscillations in X-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of state. We illustrate how these complementary X-ray timing techniques can be used to constrain the dense matter equation of state, and discuss the results that might be expected from a 10m2^2 instrument. We also discuss how the results from such a facility would compare to other astronomical investigations of neutron star properties. [Modified for arXiv]Comment: To appear in Reviews of Modern Physics as a Colloquium, 23 pages, 9 figure

    Fermions Tunnelling from Black Holes

    Full text link
    We investigate the tunnelling of spin 1/2 particles through event horizons. We first apply the tunnelling method to Rindler spacetime and obtain the Unruh temperature. We then apply fermion tunnelling to a general non-rotating black hole metric and show that the Hawking temperature is recovered.Comment: 22 pages, v2: added references, v3: fixed minor typos, v4: added a new section applying fermion tunnelling method to Kruskal-Szekers coordinates, fixed minor typo, and added references, v5: modified introduction and conclusion, fixed typo

    Atmospheric Effects on Neutron Star Parameter Constraints with NICER

    Get PDF
    We present an analysis of the effects of uncertainties in the atmosphere models on the radius, mass, and other neutron star parameter constraints for the NICER observations of rotation-powered millisecond pulsars. To date, NICER has applied the X-ray pulse profile modeling technique to two millisecond-period pulsars: PSR J0030+0451 and the high-mass pulsar PSR J0740+6620. These studies have commonly assumed a deep-heated fully-ionized hydrogen atmosphere model, although they have explored the effects of partial-ionization and helium composition in some cases. Here we extend that exploration and also include new models with partially ionized carbon composition, externally heated hydrogen, and an empirical atmospheric beaming parametrization to explore deviations in the expected anisotropy of the emitted radiation. None of the studied atmosphere cases have any significant influence on the inferred radius of PSR J0740+6620, possibly due to its X-ray faintness, tighter external constraints, and/or viewing geometry. In the case of PSR J0030+0451 both the composition and ionization state could significantly alter the inferred radius. However, based on the evidence (prior predictive probability of the data), partially ionized hydrogen and carbon atmospheres are disfavored. The difference in the evidence for ionized hydrogen and helium atmospheres is too small to be decisive for most cases, but the inferred radius for helium models trends to larger sizes around or above 14-15 km. External heating or deviations in the beaming that are less than 5 %5\,\% at emission angles smaller than 60 degrees, on the other hand, have no significant effect on the inferred radius.Comment: 26 pages, 12 figures (2 of which are figure sets), 3 tables. Accepted for publication in Ap
    • …
    corecore