77 research outputs found

    Thermal Performance of Exposed Composed Roofs in Very Hot Dry Desert Region in Egypt (Toshky)

    Get PDF
    Thermal performance for any building in hot dry region depend on the external climatic factor, the ability of the construction materials used in gained heat through day time and loss this heat through night time through the nocturnal radiation. Roof is considered the major part of the building envelop which exposed to high thermal load due to the high solar intensity and high outdoor air temperature through summer season which reach to 6 months. In Egypt the thermal effect of roof is increased as one go towards from north to south. This study evaluate the thermal performance of different test rooms with different roofs construction; uninsulated concrete, insulated concrete, double, plant, and active concrete roofs, constructed under the effect of external climatic condition of very hot and dry region in Egypt (Toshky region). The external climatic conditions and the temperature distribution inside the roof construction and the indoor air temperature were measured. The results of this study recognized that the thermal transmittance (UValue) has a major role in chosen the constructed materials. Also the thermal insulation considered the suitable manner for damping the thermal stresses through day time and makes the interior environment of the building near the comfort zone during most months of the year. Natural night and forced ventilation are more important in improving the internal conditions. The construction roof systems show that the indoor air temperature thermal damping reach to 96%, 90%, 89%, and 76% for insulated concrete, double, planted and uninsulated concrete roofs. The results also investigate the importance of using the earth as a cooling source through the active concrete system. Evaporative cooling and movable shading which are an integrated part of the guidelines for building design in hot dry region must be using

    Methamphetamine administration targets multiple immune subsets and induces phenotypic alterations suggestive of immunosuppression.

    Get PDF
    Methamphetamine (Meth) is a widely abused stimulant and its users are at increased risk for multiple infectious diseases. To determine the impact of meth on the immune system, we utilized a murine model that simulates the process of meth consumption in a typical addict. Our phenotypic analysis of leukocytes from this dose escalation model revealed that meth affected key immune subsets. Meth administration led to a decrease in abundance of natural killer (NK) cells and the remaining NK cells possessed a phenotype suggesting reduced responsiveness. Dendritic cells (DCs) and Gr-1(high) monocytes/macrophages were also decreased in abundance while Gr-1(low) monocytes/macrophages appear to show signs of perturbation. CD4 and CD8 T cell subsets were affected by methamphetamine, both showing a reduction in antigen-experienced subsets. CD4 T cells also exhibited signs of activation, with increased expression of CD150 on CD226-expressing cells and an expansion of KLRG1(+), FoxP3(-) cells. These results exhibit that meth has the ability to disrupt immune homeostasis and impact key subsets of leukocytes which may leave users more vulnerable to pathogens

    Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect.

    Get PDF
    Traumatic brain injury (TBI) produces profound and lasting neuroinflammation that has both beneficial and detrimental effects. Recent evidence has implicated microRNAs (miRNAs) in the regulation of inflammation both in the periphery and the CNS. We examined the expression of inflammation associated miRNAs in the context of TBI using a mouse controlled cortical impact (CCI) model and found increased levels of miR-21, miR-223 and miR-155 in the hippocampus after CCI. The expression of miR-155 was elevated 9-fold after CCI, an increase confirmed by in situ hybridization (ISH). Interestingly, expression of miR-155 was largely found in neuronal nuclei as evidenced by co-localization with DAPI in MAP2 positive neurons. In miR-155 knock out (KO) mice expression of type I interferons IFNα and IFNβ, as well as IFN regulatory factor 1 and IFN-induced chemokine CXCL10 was decreased after TBI relative to wild type (WT) mice. Unexpectedly, miR-155 KO mice had increased levels of microglial marker Iba1 and increased neuronal degeneration as measured by fluoro-jade C (FJC) staining, suggesting a neuroprotective role for miR-155 in the context of TBI. This work demonstrates a role for miR-155 in regulation of the IFN response and neurodegeneration in the aftermath of TBI. While the presence of neuronal nuclear miRNAs has been described previously, their importance in disease states is relatively unknown. Here, we show evidence of dynamic regulation and pathological function of a nuclear miRNA in TBI

    The evolutionary young miR-1290 favors mitotic exit and differentiation of human neural progenitors through altering the cell cycle proteins.

    Get PDF
    Regulation of cellular proliferation and differentiation during brain development results from processes requiring several regulatory networks to function in synchrony. MicroRNAs are part of this regulatory system. Although many microRNAs are evolutionarily conserved, recent evolution of such regulatory molecules can enable the acquisition of new means of attaining specialized functions. Here we identify and report the novel expression and functions of a human and higher primate-specific microRNA, miR-1290, in neurons. Using human fetal-derived neural progenitors, SH-SY5Y neuroblastoma cell line and H9-ESC-derived neural progenitors (H9-NPC), we found miR-1290 to be upregulated during neuronal differentiation, using microarray, northern blotting and qRT-PCR. We then conducted knockdown and overexpression experiments to look at the functional consequences of perturbed miR-1290 levels. Knockdown of miR-1290 inhibited differentiation and induced proliferation in differentiated neurons; correspondingly, miR-1290 overexpression in progenitors led to a slowing down of the cell cycle and differentiation to neuronal phenotypes. Consequently, we identified that crucial cell cycle proteins were aberrantly changed in expression level. Therefore, we conclude that miR-1290 is required for maintaining neurons in a differentiated state

    Traumatic brain injury increases levels of miR-21 in extracellular vesicles: implications for neuroinflammation

    Get PDF
    Traumatic brain injury (TBI) is an important health concern and effective treatment strategies remain elusive. Understanding the complex multicellular response to TBI may provide new avenues for intervention. In the context of TBI, cell–cell communication is critical. One relatively unexplored form of cell–cell communication in TBI is extracellular vesicles (EVs). These membrane‐bound vesicles can carry many different types of cargo between cells. Recently, miRNA in EVs have been shown to mediate neuroinflammation and neuronal injury. To explore the role of EV‐associated miRNA in TBI, we isolated EVs from the brain of injured mice and controls, purified RNA from brain EVs, and performed miRNA sequencing. We found that the expression of miR‐212 decreased, while miR‐21, miR‐146, miR‐7a, and miR‐7b were significantly increased with injury, with miR‐21 showing the largest change between conditions. The expression of miR‐21 in the brain was primarily localized to neurons near the lesion site. Interestingly, adjacent to these miR‐21‐expressing neurons were activated microglia. The concurrent increase in miR‐21 in EVs with the elevation of miR‐21 in neurons, suggests that miR‐21 is secreted from neurons as potential EV cargo. Thus, this study reveals a new potential mechanism of cell–cell communication not previously described in TBI

    Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA

    Get PDF
    HIV-infected individuals are living longer on antiretro-viral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First,we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across \u3e80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA).We find that decreased HLA methylation is predictive of lower CD4/CD8T cell ratio, linking molecular aging, epigenetic regulation, and disease progression

    DAW: Duplicate-AWare Federated Query Processing over the Web of Data

    Full text link
    Abstract. Over the last years the Web of Data has developed into a large compendium of interlinked data sets from multiple domains. Due to the decentralised architecture of this compendium, several of these datasets contain duplicated data. Yet, so far, only little attention has been paid to the effect of duplicated data on federated querying. This work presents DAW, a novel duplicate-aware approach to feder-ated querying over the Web of Data. DAW is based on a combination of min-wise independent permutations and compact data summaries. It can be directly combined with existing federated query engines in or-der to achieve the same query recall values while querying fewer data sources. We extend three well-known federated query processing engines – DARQ, SPLENDID, and FedX – with DAW and compare our exten-sions with the original approaches. The comparison shows that DAW can greatly reduce the number of queries sent to the endpoints, while keeping high query recall values. Therefore, it can significantly improve the performance of federated query processing engines. Moreover, DAW provides a source selection mechanism that maximises the query recall, when the query processing is limited to a subset of the sources
    corecore