7,378 research outputs found

    Shock propagation and stability in causal dissipative hydrodynamics

    Full text link
    We studied the shock propagation and its stability with the causal dissipative hydrodynamics in 1+1 dimensional systems. We show that the presence of the usual viscosity is not enough to stabilize the solution. This problem is solved by introducing an additional viscosity which is related to the coarse-graining scale of the theory.Comment: 14 pages, 16 figure

    Relativistic Dissipative Hydrodynamics: A Minimal Causal Theory

    Get PDF
    We present a new formalism for the theory of relativistic dissipative hydrodynamics. Here, we look for the minimal structure of such a theory which satisfies the covariance and causality by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). It can readily be applied to the full three-dimensional hydrodynamical calculations. We apply our formalism to the Bjorken model and the results are shown to be analogous to the IS.Comment: 25 pages, 2 figures, Phys. Rev. C in pres

    Direct observation of the effective bending moduli of a fluid membrane: Free-energy cost due to the reference-plane deformations

    Full text link
    Effective bending moduli of a fluid membrane are investigated by means of the transfer-matrix method developed in our preceding paper. This method allows us to survey various statistical measures for the partition sum. The role of the statistical measures is arousing much attention, since Pinnow and Helfrich claimed that under a suitable statistical measure, that is, the local mean curvature, the fluid membranes are stiffened, rather than softened, by thermal undulations. In this paper, we propose an efficient method to observe the effective bending moduli directly: We subjected a fluid membrane to a curved reference plane, and from the free-energy cost due to the reference-plane deformations, we read off the effective bending moduli. Accepting the mean-curvature measure, we found that the effective bending rigidity gains even in the case of very flexible membrane (small bare rigidity); it has been rather controversial that for such non-perturbative regime, the analytical prediction does apply. We also incorporate the Gaussian-curvature modulus, and calculated its effective rigidity. Thereby, we found that the effective Gaussian-curvature modulus stays almost scale-invariant. All these features are contrasted with the results under the normal-displacement measure

    Diffusion in pores and its dependence on boundary conditions

    Full text link
    We study the influence of the boundary conditions at the solid liquid interface on diffusion in a confined fluid. Using an hydrodynamic approach, we compute numerical estimates for the diffusion of a particle confined between two planes. Partial slip is shown to significantly influence the diffusion coefficient near a wall. Analytical expressions are derived in the low and high confinement limits, and are in good agreement with numerical results. These calculations indicate that diffusion of tagged particles could be used as a sensitive probe of the solid-liquid boundary conditions.Comment: soumis \`a J.Phys. Cond. Matt. special issue on "Diffusion in Liquids, Polymers, Biophysics and Chemical Dynamics

    Quantum conductance problems and the Jacobi ensemble

    Full text link
    In one dimensional transport problems the scattering matrix SS is decomposed into a block structure corresponding to reflection and transmission matrices at the two ends. For SS a random unitary matrix, the singular value probability distribution function of these blocks is calculated. The same is done when SS is constrained to be symmetric, or to be self dual quaternion real, or when SS has real elements, or has real quaternion elements. Three methods are used: metric forms; a variant of the Ingham-Seigel matrix integral; and a theorem specifying the Jacobi random matrix ensemble in terms of Wishart distributed matrices.Comment: 10 page

    Analytical investigation of magnetic field distributions around superconducting strips on ferromagnetic substrates

    Full text link
    The complex-field approach is developed to derive analytical expressions of the magnetic field distributions around superconducting strips on ferromagnetic substrates (SC/FM strips). We consider the ferromagnetic substrates as ideal soft magnets with an infinite magnetic permeability, neglecting the ferromagnetic hysteresis. On the basis of the critical state model for a superconducting strip, the ac susceptibility χ1′+iχ1′′\chi_1'+i\chi_1'' of a SC/FM strip exposed to a perpendicular ac magnetic field is theoretically investigated, and the results are compared with those for superconducting strips on nonmagnetic substrates (SC/NM strips). The real part χ1′\chi_1' for H0/jcds→0H_0/j_cd_s\to 0 (where H0H_0 is the amplitude of the ac magnetic field, jcj_c is the critical current density, and dsd_s is the thickness of the superconducting strip) of a SC/FM strip is 3/4 of that of a SC/NM strip. The imaginary part χ1′′\chi_1'' (or ac loss QQ) for H0/jcds<0.14H_0/j_cd_s<0.14 of a SC/FM strip is larger than that of a SC/NM strip, even when the ferromagnetic hysteresis is neglected, and this enhancement of χ1′′\chi_1'' (or QQ) is due to the edge effect of the ferromagnetic substrate.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Pseudopotential in resonant regimes

    Full text link
    The zero-range potential approach is extended for the description of situations where two-body scattering is resonant in arbitrary partial waves. The formalism generalizes the Fermi pseudopotential which can be used only for s-wave broad resonances. In a given channel, the interaction is described either in terms of a contact condition on the wave function or with a family of pseudopotentials. We show that it is necessary to introduce a regularized scalar product for wave functions obtained in the zero-range potential formalism (except for the Fermi pseudopotential). This metrics shows that the geometry of these Hilbert spaces depends crucially on the interaction.Comment: 12 pages - 1 figur

    Organics in comet 67P – a first comparative analysis of mass spectra from ROSINA–DFMS, COSAC and Ptolemy

    Get PDF
    The ESA Rosetta spacecraft followed comet 67P at a close distance for more than 2 yr. In addition, it deployed the lander Philae on to the surface of the comet. The (surface) composition of the comet is of great interest to understand the origin and evolution of comets. By combining measurements made on the comet itself and in the coma, we probe the nature of this surface material and compare it to remote sensing observations. We compare data from the double focusing mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission and previously published data from the two mass spectrometers COSAC (COmetary Sampling And Composition) and Ptolemy on the lander. The mass spectra of all three instruments show very similar patterns of mainly CHO-bearing molecules that sublimate at temperatures of 275 K. The DFMS data also show a great variety of CH-, CHN-, CHS-, CHO2- and CHNO-bearing saturated and unsaturated species. Methyl isocyanate, propanal and glycol aldehyde suggested by the earlier analysis of the measured COSAC spectrum could not be confirmed. The presence of polyoxymethylene in the Ptolemy spectrum was found to be unlikely. However, the signature of the aromatic compound toluene was identified in DFMS and Ptolemy data. Comparison with remote sensing instruments confirms the complex nature of the organics on the surface of 67P, which is much more diverse than anticipated

    Pinning and Tribology of Tethered Monolayers on Disordered Substrates

    Full text link
    We study the statistical mechanics and dynamics of crystalline films with a fixed internal connectivity on a random substrate. Defect free triangular lattices exhibit a sharp transition to a low temperature glassy phase with anomalous phonon fluctuations and a nonlinear force-displacement law with a continuously variable exponent, similar to the vortex glass phase of directed lines in 1+1 dimensions. The periodicity of the tethered monolayer acts like a filter which amplifies particular Fourier components of the disorder. However, the absence of annealed topological defects like dislocations is crucial: the transition is destroyed when the constraint of fixed connectivity is relaxed and dislocations are allowed to proliferate.Comment: revtex, preprint style, 27 pages. This submission is a revision of cond-mat/9607184. The revisions affect only Appendix B, Appendix C, and Eqs. 2.27, 2.28, 2.3

    Scaling in Complex Systems: Analytical Theory of Charged Pores

    Full text link
    In this paper we find an analytical solution of the equilibrium ion distribution for a toroidal model of a ionic channel, using the Perfect Screening Theorem (PST). The ions are charged hard spheres, and are treated using a variational Mean Spherical Approximation (VMSA) . Understanding ion channels is still a very open problem, because of the many exquisite tuning details of real life channels. It is clear that the electric field plays a major role in the channel behaviour, and for that reason there has been a lot of work on simple models that are able to provide workable theories. Recently a number of interesting papers have appeared that discuss models in which the effect of the geometry, excluded volume and non-linear behaviour is considered. We present here a 3D model of ionic channels which consists of a charged, deformable torus with a circular or elliptical cross section, which can be flat or vertical (close to a cylinder). Extensive comparisons to MC simulations were performed. The new solution opens new possibilities, such as studying flexible pores, and water phase transformations inside the pores using an approach similar to that used on flat crystal surfaces
    • …
    corecore