17,185 research outputs found

    Tableaux on k+1-cores, reduced words for affine permutations, and k-Schur expansions

    Get PDF
    The kk-Young lattice YkY^k is a partial order on partitions with no part larger than kk. This weak subposet of the Young lattice originated from the study of the kk-Schur functions(atoms) sλ(k)s_\lambda^{(k)}, symmetric functions that form a natural basis of the space spanned by homogeneous functions indexed by kk-bounded partitions. The chains in the kk-Young lattice are induced by a Pieri-type rule experimentally satisfied by the kk-Schur functions. Here, using a natural bijection between kk-bounded partitions and k+1k+1-cores, we establish an algorithm for identifying chains in the kk-Young lattice with certain tableaux on k+1k+1 cores. This algorithm reveals that the kk-Young lattice is isomorphic to the weak order on the quotient of the affine symmetric group S~k+1\tilde S_{k+1} by a maximal parabolic subgroup. From this, the conjectured kk-Pieri rule implies that the kk-Kostka matrix connecting the homogeneous basis \{h_\la\}_{\la\in\CY^k} to \{s_\la^{(k)}\}_{\la\in\CY^k} may now be obtained by counting appropriate classes of tableaux on k+1k+1-cores. This suggests that the conjecturally positive kk-Schur expansion coefficients for Macdonald polynomials (reducing to q,tq,t-Kostka polynomials for large kk) could be described by a q,tq,t-statistic on these tableaux, or equivalently on reduced words for affine permutations.Comment: 30 pages, 1 figur

    Faraday patterns in dipolar Bose-Einstein condensates

    Full text link
    Faraday patterns can be induced in Bose-Einstein condensates by a periodic modulation of the system nonlinearity. We show that these patterns are remarkably different in dipolar gases with a roton-maxon excitation spectrum. Whereas for non-dipolar gases the pattern size decreases monotonously with the driving frequency, patterns in dipolar gases present, even for shallow roton minima, a highly non trivial frequency dependence characterized by abrupt pattern size transitions, which are especially pronounced when the dipolar interaction is modulated. Faraday patterns constitute hence an optimal tool for revealing the onset of the roton minimum, a major key feature of dipolar gases.Comment: 4 pages, 10 figure

    Interim user's manual for boundary layer integral matrix procedure, version J

    Get PDF
    A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included

    Boundary layer integral matrix procedure code modifications and verifications

    Get PDF
    A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented

    A Hybrid Observer for a Distributed Linear System with a Changing Neighbor Graph

    Full text link
    A hybrid observer is described for estimating the state of an m>0m>0 channel, nn-dimensional, continuous-time, distributed linear system of the form x˙=Ax,  yi=Cix,  i∈{1,2,…,m}\dot{x} = Ax,\;y_i = C_ix,\;i\in\{1,2,\ldots, m\}. The system's state xx is simultaneously estimated by mm agents assuming each agent ii senses yiy_i and receives appropriately defined data from each of its current neighbors. Neighbor relations are characterized by a time-varying directed graph N(t)\mathbb{N}(t) whose vertices correspond to agents and whose arcs depict neighbor relations. Agent ii updates its estimate xix_i of xx at "event times" t1,t2,…t_1,t_2,\ldots using a local observer and a local parameter estimator. The local observer is a continuous time linear system whose input is yiy_i and whose output wiw_i is an asymptotically correct estimate of LixL_ix where LiL_i a matrix with kernel equaling the unobservable space of (Ci,A)(C_i,A). The local parameter estimator is a recursive algorithm designed to estimate, prior to each event time tjt_j, a constant parameter pjp_j which satisfies the linear equations wk(tj−τ)=Lkpj+μk(tj−τ),  k∈{1,2,…,m}w_k(t_j-\tau) = L_kp_j+\mu_k(t_j-\tau),\;k\in\{1,2,\ldots,m\}, where τ\tau is a small positive constant and μk\mu_k is the state estimation error of local observer kk. Agent ii accomplishes this by iterating its parameter estimator state ziz_i, qq times within the interval [tj−τ,tj)[t_j-\tau, t_j), and by making use of the state of each of its neighbors' parameter estimators at each iteration. The updated value of xix_i at event time tjt_j is then xi(tj)=eAτzi(q)x_i(t_j) = e^{A\tau}z_i(q). Subject to the assumptions that (i) the neighbor graph N(t)\mathbb{N}(t) is strongly connected for all time, (ii) the system whose state is to be estimated is jointly observable, (iii) qq is sufficiently large, it is shown that each estimate xix_i converges to xx exponentially fast as t→∞t\rightarrow \infty at a rate which can be controlled.Comment: 7 pages, the 56th IEEE Conference on Decision and Contro
    • …
    corecore