
Journal of Combinatorial Theory, Series A 112 (2005) 44–81

www.elsevier.com/locate/jcta

Tableaux onk + 1-cores, reduced words for affine
permutations, andk-Schur expansions

Luc Lapointea,1, Jennifer Morseb,2
aInstituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
bDepartment of Mathematics, University of Miami, Coral Gables, FL 33124, USA

Received 11 August 2003

Communicated by Adriano Garsia
Available online 17 March 2005

Abstract

Thek-Young latticeYk is a partial order on partitions with no part larger thank. This weak subposet
of the Young lattice originated (Duke Math. J. 116 (2003) 103–146) from the study of thek-Schur

functionss(k)� , symmetric functions that form a natural basis of the space spanned by homogeneous
functions indexed byk-bounded partitions. The chains in thek-Young lattice are induced by a Pieri-
type rule experimentally satisfied by thek-Schur functions. Here, using a natural bijection between
k-bounded partitions andk + 1-cores, we establish an algorithm for identifying chains in thek-
Young lattice with certain tableaux onk + 1 cores. This algorithm reveals that thek-Young lattice
is isomorphic to the weak order on the quotient of the affine symmetric groupS̃k+1 by a maximal
parabolic subgroup. From this, the conjecturedk-Pieri rule implies that thek-Kostka matrix connecting

the homogeneous basis{h�}�∈Y k to {s(k)� }�∈Y k may now be obtained by counting appropriate classes
of tableaux onk+1-cores. This suggests that the conjecturally positivek-Schur expansion coefficients
for Macdonald polynomials (reducing toq, t-Kostka polynomials for largek) could be described by
aq, t-statistic on these tableaux, or equivalently on reduced words for affine permutations.
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1. Introduction

1.1. The k-Young lattice

Recall that� is a successor of a partition� in the Young lattice when� is obtained by
adding an addable corner to� where partitions are identified by their Ferrers diagrams,
with rows weakly decreasing from bottom-to-top. This relation, which we denote “� → �”,
occurs naturally in the classical Pieri rule

h1[X] s�[X] =
∑

�:�→�

s�[X], (1.1)

and the partial order of the Young lattice may be defined as the transitive closure of� → �.
It was experimentally observed that thek-Schur functions[9,11] satisfy the rule

h1[X] s(k)� [X] =
∑

�:�→k �

s
(k)

� [X] , (1.2)

where “� →k �” is a certain subrelation of “� → �”. This given, the partial order of the
k-Young latticeY k is defined as the transitive closure of� →k �.
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The precise definition of the relation� →k � stems from another “Schur” property of
k-Schur functions. Computational evidence suggests that the usual�-involution for sym-
metric functions acts onk-Schur functions according to the formula

� s(k)� [X] = s
(k)

��k
[X] , (1.3)

where the map� �→ ��k is an involution onk-bounded partitions called “k-conjugation”
that generalizes partition conjugation� �→ �′. Then viewing the covering relations on the
Young lattice as

� → � ⇐⇒ |�| = |�| + 1 and � ⊆ � and �′ ⊆ �′ , (1.4)

we accordingly, in our previous work[9], defined� →k � in terms of the involution
� �→ ��k by

� →k � ⇐⇒ |�| = |�| + 1 and � ⊆ � and ��k ⊆ ��k . (1.5)

Thus only certain addable corners may be added to a partition� to obtain its successors in
thek-Young lattice. We shall call such corners the “k-addable corners” of �.

Here, we provide a direct characterization ofk-addable corners. This characterization is
obtained by first constructing a bijection betweenk-bounded partitions andk + 1-cores.
We then show that certain operators preserving the set ofk + 1-cores act on thek-Young
lattice (through this bijection) by lowering or raising its elements according to the covering
relations. Passing from an element to its successor by means of these operators, we thus
obtain an algorithm for constructing any saturated chain in thek-Young lattice. Such a
construction leads us to a bijection between chains in thek-Young lattice and a new family
of tableaux called “k-tableaux” that share properties of usual semi-standard tableaux.

On the other hand, the weak order on the quotient of the affine symmetric groupS̃k+1 by a
maximal parabolic subgroup can be characterized using the previously mentioned operators
on cores. This enables us to show that thek-Young lattice is isomorphic to the weak order
on this quotient. Consequences include a bijection between standardk-tableaux of a fixed
shape and reduced words for a fixed affine permutation, as well as a new bijection between
k-bounded partitions and affine permutations in the quotient.

To precisely summarize our results, first recall that ak + 1-core is a partition with no
k + 1-hooks. For anyk + 1-core�, we then define

p(�) = (�1, . . . , ��),

where�i is the number of cells withk-bounded hook length in rowi of �. It turns out
thatp(�) is ak-bounded partition and that the correspondence� �→ p(�) bijectively maps
k + 1-cores ontok-bounded partitions. With� �→ c(�) denoting the inverse ofp, we define
thek-conjugation of ak-bounded partition� to be

��k = p
(
c(�)′

)
. (1.6)

That is, if � is the k + 1-core corresponding to�, then��k is the partition whose row
lengths equal the number ofk-bounded hooks in corresponding rows of�′. This reveals that
k-conjugation, which originally emerged from the action of the� involution onk-Schur
functions, is none other than thep-image of ordinary conjugation ofk + 1-cores.
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Thep-bijection then leads us to a characterization fork-addable corners that determine
successors in thek-Young lattice. By labeling every square(i, j) in the ith row andj th
column by its “k + 1-residue”, j − i modk + 1, we find

(Theorem 23). Let c be any addable corner of a k-bounded partition� andc′ (of k + 1-
residue i) be the addable corner ofc(�) in the same row as c. c is k-addable if and only if
c′ is the highest addable corner ofc(�) with k + 1-residue i.

This characterization ofk-addability leads us to a notion of standardk-tableaux which
we prove are in bijection with saturated chains in thek-Young lattice.

(Definition 27). Let � be ak + 1-core andm be the number ofk-bounded hooks of�. A
standardk-tableau of shape� is a filling of the cells of� with the letters 1,2, . . . , m which
is strictly increasing in rows and columns and such that the cells filled with the same letter
have the samek + 1-residue.

(Theorem 37). The saturated chains in the k-Young lattice joining the empty partition∅ to
a given k-bounded partition� are in bijection with the standard k-tableaux of shapec(�).

We then consider the affine symmetric groupS̃k+1 modulo a maximal parabolic subgroup
denoted bySk+1. Bruhat order on the minimal coset representatives ofS̃k+1/Sk+1 can be
defined by containment ofk+1-core diagrams (this connection is stated by Lascoux[8] and
is equivalent to other characterizations such as in [1,15]). From this, stronger relations among
k+1-core diagrams can be used to describe the weak order on such coset representatives. We
are thus able to prove that our new characterization of thek-Young lattice chains implies
an isomorphism between thek-Young lattice and the weak order on the minimal coset
representatives. Consequently, a bijection between the set ofk-tableaux of a given shape
c(�) and the set of reduced decompositions for a certain affine permutation�� ∈ S̃k+1/Sk+1
can be achieved by mapping ak-tableau to the reduced word:

T �→ i� · · · i2, i1 , (1.7)

whereia is thek+1-residue of lettera in the standardk-tableauT. A by-product of this result
is a simple bijection betweenk-bounded partitions and affine permutations inS̃k+1/Sk+1:

� : � �→ �� , (1.8)

where�� corresponds to the reduced decomposition obtained by reading thek+1-residues
of � from right to left and from top to bottom. It is shown in[13] that this bijection, although
algorithmically distinct, is equivalent to the one presented by Björner and Brenti [1] using a
notion of inversions on affine permutations. It follows from our results that Eq. (1.2) reduces
simply to

h1[X] s(k)
�−1(�)

[X] =
∑

�<·w �

s
(k)

�−1(�)
[X] , (1.9)

where the sum is over all permutations that cover� in the weak order oñSk+1/Sk+1.
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As will be detailed in §1.2, Theorem 37 also plays a role in the theory of Macdonald
polynomials and the study ofk-Schur functions, thus motivating a semi-standard extension
of Definition 27:

(Definition 59). Letm be the number ofk-bounded hooks in ak + 1-core� and let� =
(�1, . . . , �r ) be a composition ofm. A semi-standardk-tableau of shape� and evaluation
� is a column strict filling of� with the letters 1,2, . . . , r such that the collection of cells
filled with letter i is labeled with exactly�i distinctk + 1-residues.

As with the ordinary semi-standard tableaux, we show that there are no semi-standard
k-tableaux under conditions relating to dominance order on the shape and evaluation. An
analogue of Theorem 37 can then be used to show that this coincides with unitriangularity
of coefficients in thek-Schur expansion of homogeneous symmetric functions and suggests
that thek-tableaux should have statistics to combinatorially describe thek-Schur function
expansion of the Hall–Littlewood polynomials. The analogue of Theorem 37 relies on the
following definition: with the pair ofk-bounded partitions�, � defined to be “r-admissible”
if and only if �/� and��k /��k are, respectively, horizontal and verticalr-strips, we say a
sequence of partitions

∅ = �(0) −→ �(1) −→ �(2) −→ · · · −→ �(�)

is �-admissible when�(i), �(i−1) is a�i-admissible pair fori = 1, . . . , �. It turns out that
all �-admissible sequences are in fact chains in thek-Young lattice and that Theorem37
extends to

(Theorem 71). Let m be the number of k-bounded hooks in ak + 1-core � and let� be
a composition of m. The collection of�-admissible chains joining∅ to p(�) is in bijection
with the semi-standard k-tableaux of shape� and evaluation�.

An affine permutation interpretation for the�-admissible chains that generalizes our
w-bijection between semi-standardk-tableaux and reduced words is given in [13] along
with a more detailed discussion of the connection between the type-A affine Weyl group
and thek-Schur functions. The reader is also referred to [12] for a study of principal order
ideals in thek-Young lattice along with further properties of the lattice such as the fact
that the covering relation is invariant under translation by rectangular shapes with hook-
length equal tok. This is the underlying mechanism in the proof that thek-Young lattice
corresponds to a cone in a tiling ofRk by permutahedrons [17].

As mentioned, the root of our work lies in the study of symmetric functions. We conclude
our introduction with a summary of these ideas.

1.2. Macdonald expansion coefficients

Thek-Young lattice emerged from the experimental Pieri rule (1.2) satisfied byk-Schur
functions. In turn,k-Schur functions have arisen from a close study of Macdonald poly-
nomials. To appreciate the role of our findings in the theory of Macdonald polynomials
we shall briefly review this connection. To begin, we consider the Macdonald polynomial
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H�[X; q, t] obtained from the Macdonald integral form[14] J�[X; q, t] by the plethystic
substitution

H�[X; q, t ] = J�
[

X
1−q

; q, t ] . (1.10)

For� � n, this yields the Schur function expansion

H�[X; q, t ] =
∑
� � n

K��(q, t)s�[X] , (1.11)

whereK��(q, t) ∈ N[q, t] are known as theq, t-Kostka polynomials. Formula (1.11), when
q = t = 1, reduces to

hn1 =
∑
� � n

f� s�[X] , (1.12)

wheref� is the number of standard tableaux of shape�. This given, one of the outstanding
problems in algebraic combinatorics is to associate a pair of statisticsa�(T ), b�(T ) on
standard tableaux to the partition� so that

K��(q, t) =
∑

T ∈ST (�)
qa�(T )tb�(T ) , (1.13)

where “ST (�)” denotes the collection of standard tableaux of shape�.
In previous work[9,11], we proposed a new approach to the study of theq, t-Kostka

polynomials. This approach is based on the discovery of a certain family of symmetric
functions{s(k)� [X; t]}�∈Y k for each integerk�1, which we have shown [11] to be a basis for

the space�(k)
t spanned by the Macdonald polynomialsH�[X; q, t ] indexed byk-bounded

partitions. This revealed a mechanism underlying the structure of the coefficientsK��(q, t).
To be precise, for�, 	 ∈ Y k, consider

H�[X; q, t ] =
∑
	∈Y k

K(k)
	� (q, t) s(k)	 [X; t ] and s(k)	 [X; t ] =

∑
�


�	(t) s�[X] .

(1.14)

We then we have the factorization

K��(q, t) =
∑
	∈Y k


�	(t)K
(k)
	� (q, t) . (1.15)

It was experimentally observed (and proven fork = 2 in [10,11]) thatK(k)
	� (q, t) ∈ N[q, t]

and
�	(t) ∈ N[t]. This suggests that the problem of finding statistics forK��(q, t) may

be decomposed into two separate analogous problems forK
(k)
	� (q, t) and
�	(t). We also

have experimental evidence to support thatK��(q, t) − K
(k)
	� (q, t) ∈ N[q, t] which brings

about the fact thats(k)� [X; t ]-expansions are formally simpler.

These developments prompted a close study of the polynomialss
(k)

� [X; 1 ] = s
(k)

� [X]. In
addition to (1.2), it was also conjectured that these polynomials satisfy the more
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general rule

hr [X] s(k)� [X] =
∑

�/�=horizontalr-strip
��k /��k=vertical r-strip

s
(k)

� [X]. (1.16)

Iteration of (1.2) starting froms∅[X] = 1 yields

hn1[X] =
∑
�∈Y k

K
(k)

�,1ns
(k)

� [X] , (1.17)

while iterating (1.16) for suitable choices ofr gives thek-Schur function expansion of an
h-basis element indexed by anyk-bounded partition� . That is,

h�[X] =
∑
�∈Y k

K
(k)

�� s
(k)

� [X]. (1.18)

Sinces(k)� [X] = s�[X] when all the hooks of� arek-bounded, we see that (1.17) reduces to

(1.12) for a sufficiently largek. For the same reason, the coefficientK
(k)

�� in (1.18) reduces
to the classical Kostka numberK�� whenk is large enough. Our definition of thek-Young
latticeY k and admissible chains inY k, combined with the experimental Pieri rules (1.2)
and (1.16), yield the following corollary of Theorems 37 and 71:

On the validity of (1.16), the coefficientK(k)

�,1n is equal to the number of standard
k-tableaux of shapec(�), or equivalently the number of reduced expressions for��,
and the coefficientK(k)

�� is equal to the number of semi-standard k-tableaux of shape
c(�) and evaluation�.

Since (1.14) reduces to (1.17) whenq = t = 1, this suggests that the positivity ofK
(k)

�� (q, t)

may be accounted for byq, t-counting standardk-tableaux of shapec(�), or reduced words
of ��, according to a suitable statistic depending on�. More precisely, forT k(�) the set
of k-tableaux of shapec(�) andRed(�) the reduced words for�,

H�[X; q, t ] =
∑

�:�1 �k

 ∑
T ∈T k(�)

qa�(T ) tb�(T )

 s
(k)

� [X; t ] (1.19)

=
∑

�∈S̃k+1/Sk+1

 ∑
w∈Red(�)

qa�� (w) tb�� (w)

 s
(k)

�−1(�)
[X; t ] . (1.20)

We should also mention that the relation in (1.18) was proven to be unitriangular [11]
with respect to the dominance partial order “� ” as well as thet-analog of this relation,
given by the Hall–Littlewood polynomials corresponding to the specializationq = 0 of the
Macdonald polynomials:

H�[X; 0, t ] =
∑
�∈Y k

���

K
(k)

�� (t) s
(k)

� [X; t ] . (1.21)
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Our conjecture thatK(k)

�� (q, t) ∈ N[q, t] impliesK(k)

�� (t) would also have positive integer
coefficients. Our work here then suggests that this positivity may be accounted for by
showing that theK(k)

�� (t) can be obtained byt-counting semi-standardk-tableaux according
to a suitablek-charge statistic.

In conclusion, since (1.18) is obtained by iterating (1.16) and the resulting matrix‖K(k)

�� ‖
is unitriangular, the inversion of this matrix gives a well-defined family of functions that
are conjectured to be thek-Schur functions. This provides a relatively simple algorithm
for computing the “k-Schur functions” (att = 1) for anyone who wishes to experiment. A
study of the “k-Schur functions” obtained in this manner is carried out in [19] where it is
shown, in particular, that they satisfy thek-Pieri rule (1.2).

2. Definitions

2.1. Partitions

A partition � = (�1, . . . , �m) is a non-increasing sequence of positive integers. The
degree of� is |�| = �1 + · · · + �m and the length�(�) is the number of partsm. Each
partition� has an associated Ferrers diagram with�i lattice squares in theith row, from the
bottom-to-top. For example,

� = (4,2) = . (2.1)

Given a partition�, its conjugate�′ is the diagram obtained by reflecting�about the diagonal.
A partition � is “k-bounded” if �1�k. Any lattice square in the Ferrers diagram is called
a cell, where the cell(i, j) is in the ith row andjth column of the diagram. We say that
� ⊆ � when�i ��i for all i. The dominance order� on partitions is defined by� � � when
�1 + · · · + �i ��1 + · · · + �i for all i, and|�| = |�|.

More generally, for� ⊆ �, the skew shape�/� is identified with its diagram{(i, j) :
�i < j ��i}. Lattice squares that do not lie in�/� will be simply called “squares”. We shall
say that anyc ∈ � lies “below” �/�. The “hook” of any lattice squares ∈ � is defined as
the collection of cells of�/� that lie inside theL with s as its corner. This is intended to
apply to alls ∈ � including those below�/�. In the example below the hook ofs = (1,3)
is depicted by the framed cells

�/� = (5,5,4,1)/(4,2) =
s

. (2.2)

We then leths(�/�) denote the number of cells in the hook ofs. Thus, from the example
above we haveh(1,3)

(
(5,5,4,1)/(4,2)

) = 3 andh(3,2)
(
(5,5,4,1)/(4,2)

) = 3. We shall
also say that the hook of a cell or a square isk-bounded if its length is not larger thank.

Remark 1. It is important to note that when row and column lengths of�/� weakly de-
crease from top-to-bottom and left-to-right, then the present notion of hook length satisfies
some of the standard inequalities of hook lengths. In particular,hs1(�/�)�hs2(�/�) when
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s1 = (i1, j1), s2 = (i2, j2) with i1� i2 andj1�j2 and the inequality is strict whens1, s2 ∈
�/� or s1 ∈ � ands2 ∈ �/�.

Recall that a “k+1-core” is a partition that does not contain anyk+1-hooks (see[7] for
more on cores and residues). The “k + 1-residue” of square(i, j) is j − i modk + 1. That
is, the integer in this square when squares are periodically labeled with 0,1, . . . , k, where
zeros lie on the main diagonal. The 5-residues associated to the 5-core(6,4,3,1,1,1) are

4
0
1
2 3
3 4 0 1
4 0 1 2 3
0 1 2 3 4 0 1

A cell (i, j) of a partition� with (i + 1, j + 1) /∈ � is called “extremal”. An extremal cell
which is neither at the end of its row nor at the top of its column is called “corner extremal”.
A “ removable” corner of partition� is a cell (i, j) ∈ � with (i, j + 1), (i + 1, j) /∈ �
and an “addable” corner of � is a square(i, j) /∈ � with (i, j − 1), (i − 1, j) ∈ �. All
removable corners are extremal. We should note that(1, �1), (�(�),1) are removable corners
and(1, �1 + 1), (�(�) + 1,1) are addable. In the figure below we have labeled all addable
corners witha, labeled extremal cellse (with the corner extremals overlined), and framed
the removable corners.

a

e e a

e e

e a

e e e a

(2.3)

Given any two squares,bsouth-east ofa, “a∧b” will denote the square that is simultaneously
directly south ofa and directly west ofb.

A composition� of an integerm is a vector of positive integers that sum tom. A “ tableau”
T of shape� is a filling of T with integers that is weakly increasing in rows and strictly
increasing in columns. The “evaluation” of T is given by a composition� where�i is the
multiplicity of i in T.

2.2. Affine symmetric group

The affine symmetric group̃Sk+1 is generated by thek+1 elementŝs0, . . . , ŝk satisfying
the affine Coxeter relations:

ŝ2
i = id, ŝi ŝj = ŝj ŝi (i − j �= ±1 modk + 1) and ŝi ŝi+1ŝi = ŝi+1ŝi ŝi+1 .

(2.4)

Here, and in what follows,̂si is understood aŝsi modk+1 if i�k + 1. Elements of̃Sk+1 are
called affine permutations, or simply permutations. A wordw = i1i2 · · · im in the alphabet
{0,1, . . . , k} corresponds to the permutation� ∈ S̃k+1 if � = ŝi1 · · · ŝim . The “length”
of �, denoted�(�), is the length of the shortest word corresponding to�. Any word for
� with �(�) letters is said to be “reduced”. We denote byRed(�) the set of all reduced
words of�.
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The weak order oñSk+1 is defined through the following covering relations:

� <·w� ⇐⇒ � = ŝi � for somei ∈ {0, . . . , k} , and�(�) > �(�) , (2.5)

while the Bruhat order is such that� <b � if there exist reduced wordswandu, corresponding
to � and�, respectively, such thatw is a subword ofu.

The subgroup of̃Sk+1 generated by the subset{ŝ1, . . . , ŝk} is a maximal parabolic sub-
group that is isomorphic to the symmetric group. We thus denote this subgroup bySk+1
and shall consider the set of minimal coset representatives ofS̃k+1/Sk+1. It is important to
note that if� is not the identity, then� ∈ S̃k+1/Sk+1 if and only if everyw ∈ Red(�) ends
in a zero. That is, the reduced expressions are all of the formw = i1 · · · im−1 0.

3. Bijection: k + 1-cores andk-bounded partitions

Let Ck+1 and Pk, respectively, denote the collections ofk + 1 cores andk-bounded
partitions. We start by showing that a bijection between these sets can be defined by the
map

p : � → (�1, . . . , ��),

where�i is the number of cells with ak-bounded hook in rowi of �. If �(�) is the partition
consisting only of the cells in� whose hook lengths exceedk, thenp(�) = � is equivalently
defined by letting�i denote the length of rowi in the skew diagram�/�(�). For example,
with k = 4

� = �/�(�) = p(�) =

Although it is not immediate that the codomain ofp is Pk, we shall find that each diagram
�/�(�) can be uniquely associated to a skew diagram constructed from somek-bounded
partition�.

Definition 2. For any� ∈ Pk, the “k-skew diagram of�” is the diagram�/k where

(i) row i has length�i for i = 1, . . . , �(�),
(ii) no cell of �/k has hook-length exceedingk,

(iii) all squares below�/k have hook-length exceedingk.

We shall thus find thatp is a bijection fromCk+1 to Pk with inversec defined:

Definition 3. For� ak-bounded partition and�/k = �/�, definec(�) = �.

To this end, we start by characterizing the skew diagrams�/�(�) by the following lemma,
and consequently find thatp(�) ∈ Pk.
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Lemma 4. Let� ⊆ � be partitions. Then� is a k + 1-core and� = �(�) if and only if the
skew partition�/� has the following four properties:

(i) the row lengths of�/� weakly decrease from bottom-to-top,
(ii) the column lengths of�/� weakly decrease from left-to-right,

(iii) the hooks of the cells of�/� have at most k cells,
(iv) the squares below�/� have hook-lengths exceeding k.

Proof. We shall prove that conditions (iii) and (iv) are sufficient. Letc ∈ �. Condition (iv)
asserts that the hook ofc in �/� contains at leastk+1 cells. Since the hook ofc in � contains
at least these cells andc itself, hc(�) > k + 1. Moreover, (iii) assures that all cells of�/�
have hook length�k. Thus� has nok + 1 hooks and therefore is ak + 1-core. Since all
the cells of� whose hook length exceedsk lie in �, it follows that� = �(�) as desired.

To show that conditions (i)–(iv) are necessary, let� be ak + 1-core and� = �(�). Refer
below to a typical case of two successive rows in�, whereb is the cell at the end of row
i + 1,c is the cell at the end of rowi, anda labels the cell at the top of column�i in �. Thus
a ∧ c is the cell(i, �i ) in � (labeled with a “•”). Let d be any cell of rowi + 1 that has at
least�i − �i cells of� to its right.

a

d b
• c

(3.1)

The definition of�(�) implies thatha∧c(�)�k + 2 since� is ak + 1-core.
To show (i) we must prove that�i −�i ��i+1 −�i+1, or equivalently that all suchd ’s are

in �. For this, we observe that the hook length ofd in � is at least equal to the hook length
of a ∧ c minus one. Thus,ha∧c(�)�k + 2 implies that the hook length ofd is at leastk + 1
and therefored belongs to�. Next note that since the conjugate of ak + 1 core is also a
k + 1 core and�(�′) = �(�)′, condition (ii) for�/�(�) follows from (i) for �′/�(�′).

Condition (iii) is an immediate consequence of the definition of�(�). To prove (iv), con-
sidera∧c (the “•” in our figure) as a typical removable corner of�(�). Sinceha∧c(�)�k+2,
at leastk + 1 of these cells lie in�/�(�) implying ha∧c(�/�)�k + 1. Since every square
below�/�(�) is weaklysouth–westof such a removable corner in�(�), condition (iv) follows
Remark1 given (i) and (ii). �

We thus have thatp mapsCk+1 into Pk since the parts ofp(�) are weakly increasing by
condition (i) and do not exceedk by condition (iii). To show that this map is a bijection, we
will identify its inverse by considering the following auxiliary result:

Lemma 5. For any k-bounded partition� = (�1, �2, . . . , �r ), there is a unique sequence
of skew diagrams�(r)/k, �(r−1)/k, . . . , �(1)/k where�(r)/k = (�r ) and �(i)/k is obtained by
attaching a row of length�i to the bottom of�

(i+1)/k such that:

(1) the hook lengths of�(i)/k do not exceed k,
(2) all the lattice squares below�(i)/k have hook lengths exceeding k.
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In particular, �/k = �(1)/k is the unique skew partition�/� such that

(a) the row lengths of�/� are the parts of�,
(b) � is ak + 1-core and� = �(�).

Proof. To prove that conditions (1) and (2) uniquely determine�(i)/k from �(i+1)/k, let
�(i+1)/k = �/� with � = (�i+1, �i+2, . . . , �r ) and� = (�i+1, �i+2, . . . , �r ). Inductively
assume that all conditions have been met up to this point. By construction, we have
�(i)/k = �/� with

� = (a + �i , �i+1, �i+2, . . . , �r ) and � = (a, �i+1, �i+2, . . . , �r ) (3.2)

for somea��i+1. We claim that conditions (1) and (2) uniquely determinea. From (3.2)
we derive that the hook length of the first cell in the bottom row of�(i)/k (the leftmost framed
cell in the figure) isba+1 + �i wherebj is the length of thej th column of�(i+1)/k.

a + 1
↓

• • • • X X ← i

(3.3)

To satisfy (1) we must have

bs + �i �k for all s�a + 1 . (3.4)

To satisfy (2), the squareswestof the added row must have hook lengths�k + 1. That is,

bs + �i �k + 1 for all s�a . (3.5)

Sinceba + �i �ba + �i+1, the inductive hypothesis guarantees that (3.5) will be true for
all a��i+1. That is, the squares marked with a “•” in the figure will necessarily have
hook lengths exceedingk. It follows from these observations that to obtain a skew shape
that satisfies both (1) and (2), we are forced to takea as the smallest integer such that
ba+�i �k. In this case, (3.5) is automatically satisfied. And (3.4) follows becausebs �ba+1
for all s�a + 1, given that when considering only the columns of�(i+1)/k starting from
columna + 1, the diagram�(i+1)/k is that of a partition. This completes the induction.

Now let �(1)/k = �/�. Our construction assures property (a). Also by construction,�/�
satisfies conditions (iii) and (iv) of Lemma 4, which were shown in the proof of that lemma
to be sufficient to guarantee that� is a k + 1-core with� = �(�). Conversely, if a skew
diagram�/� satisfies (a) and (b) then (a) implies� = (�1, �2, . . . �r ) and� = (�1, �2, . . . �r )
with �i − �i = �i . Moreover, property (b) assures that all the hook lengths of�/� do not
exceedk and all the squares below� have lengths exceedingk. These two properties thus
necessarily hold for all the skew diagrams

�
(i)
/k = (�i , �i+1, . . . �r )/(�i , �i+1, . . . �r ) .

Therefore,�/� = �(1)/k by the uniqueness of such diagrams satisfying (1)–(2).�
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Note that the proof of Lemma5 reveals that�(i)/k is the diagram obtained by attaching
the row of length�i to the bottom of�(i+1)/k in the leftmost position so that no hook-lengths
exceedingk are created. This algorithm gives a convenient method for constructing�/k.

Example 6. Given� = (4,3,2,2,1,1) andk = 4,

� = ⇒ �/4 = revealing thatc(�) =

We are now in the position to prove our bijection:

Theorem 7. p is a bijection fromCk+1 ontoPk with inversec.

Proof. For � ∈ Pk, consider� = c(�) ∈ Ck+1. Since�/k = �/� by definition of c,
Lemma5(a) and (b) implies thatp(�) = � and thusp (c(�)) = �. Now consider� ∈ Ck+1.
Lemma 4 implies thatp(�) = (�1 − �(�)1, . . . , �n − �(�)n) ∈ Pk, and thus by Lemma 5,

�/�(�) = p(�)/k . (3.6)

Therefore,c (p(�)) = � by definition ofc. �

4. The k-lattice

The notion of ak-skew diagram gives rise to an involution onPk, where� is sent to the
partition whose rows are obtained from the columns of�/k:

Definition 8. For any� ∈ Pk, the “k-conjugate” of� denoted��k is thek-bounded partition
given by the columns of�/k.

Equivalently, we may define thek-conjugate as the partition given by the number ofk-
bounded cells in the columns ofc(�), or simply��k = p(c(�)′). This given, sincep = c−1,
we see thatk-conjugation is an involution by:

(��k )�k = p
( [
c
(
p
(
c(�)′

))]′) = p
([
c(�)′

]′ )= p
(
c(�)

) = � . (4.1)

Example 9. With�as in Example6, the columns of�/4 give��4 = (3,2,2,1,1,1,1,1,1).

Remark 10. If h(1,1)(�)�k, all hooks of� arek-bounded and thus�/k = �. In this case,
��k = �′.

Now, we can consider a partial order “� ” on the collection ofk-bounded partitions
stemming fromk-conjugation.
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0

1

21 111

2 11

22 211 1111

221 2111 11111

222 2211 21111 111111

Fig. 1. Hasse diagram of thek-Young lattice in the casek = 2.

Definition 11. The “k-Young lattice” � on partitions inPk is defined by the covering
relation

� →k � when � ⊆ � and ��k ⊆ ��k (4.2)

for �, � ∈ Pk where|�| − |�| = 1. Fig.1 gives the casek = 2.

While this poset onk-bounded partitions originally arose in connection to a rule for
multiplying generalized Schur functions [9], we shall see in §8 that this poset turns out to
be isomorphic to the weak order on the quotient of the affine symmetric group by a maximal
parabolic subgroup. Consequently, thek-Young lattice is in fact a lattice [18] (see [17] for
a proof that follows from the identification of thek-Young lattice as a cone in a tiling of
Rk by permutahedrons).

Thek-Young lattice generalizes the Young lattice since:

Property 12. ��� reduces to��� when� and� are partitions such thath(1,1)(�)�k.

Proof. Since� ⊆ � when���, h(1,1)(�)�k implies thath(1,1)(�)�k. Remark10 then
implies that��k = �′ and��k = �′. Thus, the conditions that� ⊆ � and��k ⊆ ��k reduce
to � ⊆ � and�′ ⊆ �′, or simply� ⊆ �. �

Although the ordering� is defined by the covering relation→k, the definition implies
that

Property 13. If ���, then� ⊆ � and��k ⊆ ��k .

It is important to notice that the converse of this statement does not hold. For example,
with k = 3, � = (2,2) and� = (3,2,1,1,1,1), we have��k = � and��k = � satisfying
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� ⊆ � and��k ⊆ ��k , but��/�. This is easily seen from[12, Theorem 19] (since� contains
the 3-rectangle(2,2) while � does not), or can be more tediously verified by constructing
all chains using Theorem 23.

Similarly, althoughc(�)⊆ c(�) does not necessarily imply� ⊆ �, the converse is never-
theless true.

Property 14. � ⊆ � impliesc(�)⊆ c(�).

Proof. Let �� = c(�) and�� = c(�). Assume by contradiction that there is some row of
�� that is strictly shorter than a row of�� and let rowr be the highest such row. Lets be
the last cell of rowr of �(��) ands′ be the first cell of rowr of ��/�(��). Since�� has�r
k-bounded hooks in rowr and�� has�r ��r , the choice ofr forcess′ to be weakly to the
left of s. Now let� be the number of cells aboves in �� and�′ be the number of cells above
s′ in ��. Since all rows of�� above rowr are weakly smaller than the corresponding rows
of �� ands′ is weakly to the left ofs, we must have�′ ��. Thus the choice ofsands′ gives

k�hs′(��) = �′ + �r �� + �r = hs(��) − 1 > k ,

where the last inequality holds sincehs(��) > k and�� has nok + 1-hooks. The result
follows by contradiction. �

In what follows, we shall develop an explicit description of the chains in this poset and
provide a bijection with certain tableaux. These tableaux will then play a central role in the
connection between thek-Young lattice and the weak order, and will also be discussed in
our study of Macdonald polynomials (see §11).

5. k + 1-Cores

Since the set of� such that� ⊃ � and|�| = |�| + 1 consists of all partitions obtained
by adding a corner to�, a subset of these partitions will be the elements that cover� with
respect to�. The definition of� implies that to determine which corners can be added
to give partitions that cover�, we must find which corners can be added to� so that the
resulting diagram has ak-conjugate diagram that differs from��k by only one box. Since a
k-conjugate diagram is given by the number ofk-bounded cells in the columns of ak + 1-
core, a close study ofk+1-cores will enable us to characterize the allowable, or “k-addable”,
corners.

We begin with a number of basic properties of cores that rely on their associated residues.
For the sake of completeness, we include all proofs although some may be known. For any
integerd, we shall consider the diagonals of a partition,Dd = {(i, j) : j − i = d }. Note
that a fixedk + 1-residuer = 0,1, . . . , k occurs in successive diagonalsDr+�(k+1) for
any integer�. A sequence of lattice cellsc0, c1, . . . , cn forms a “k + 1-string” if the cells,
respectively, lie in the successive diagonals:

Dr+i(k+1), Dr+(i+1)(k+1), Dr+(i+2)(k+1), . . . , Dr+(i+n)(k+1) .
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As such, all cells in ak + 1-string have the samek + 1-residue. For any 0�r�k, we shall
also say that a squarec′ on the diagonalDr+(�)(k+1) is a “k + 1-predecessor” of any square
onDr+(�+1)(k+1). It is important to notice that if cellc′ is ak + 1-predecessor of a cellc
in a partition�, thenhc′∧c(�) = k + 2. This given, ak + 1-string of cellsc0, c1, . . . , cn is
simply a succession of cells whereci is ak + 1-predecessor ofci+1.

Our point of departure here is the following known[5] basic result.

Property 15. Let � be ak + 1-core.

(1) Let c andc′ be extremal cells of� with the samek + 1-residue(c′ weakly north-west
of c).
(a) If c is at the end of its row, then so isc′.
(b) If c has a cell above it, then so doesc′.

(2) Let c andc′ be extremal cells of� with the samek + 1-residue(c′ weakly south-east
of c).
(a) If c is at the top of its column, then so isc′.
(b) If c has a cell to its right, then so doesc′.

(3) Let c be a corner extremal cell andc′ be an extremal cell of the samek + 1-residue
as c.
(a) If c′ is weakly south-east of c, thenc′ has a cell to its right.
(b) If c′ is weakly north-west of c, thenc′ has a cell above it.

Proof. 1(a) Given that there is no cell to the right ofc, it suffices to prove that there is
no cellx to the right of the extremal cellc′ that is ak + 1-predecessor ofc—by iteration
the property will follow for non-predecessorsc′. If x ∈ � then the hook-length of the cell
determined byx andc is k + 1 since no cell lies abovex (it is to the right of an extremal
cell). However, this contradicts that� is ak + 1-core implying that there is no cell to the
right of c′.

c′ x

•
• c

•

2(a) follows from 1(a) since the transpose of ak + 1-core is ak + 1-core. Further, 1(b) and
2(b) are simply the contrapositive of 2(a) and 1(a), respectively, withc ↔ c′. Finally, since
a corner extremal cell has a cell to its right and above it, 3(a) and (b) follow, respectively,
from 2(b) and 1(b). �

Remark 16. A k+1-core� never has both a removable corner and an addable corner of the
samek + 1-residue. This follows by assuming there is an addable cornerc of somek + 1-
residuei and using Property15(3) with the corner extremal celle immediately south-west
of c. The proposition gives that all extremals ofk + 1-residuei either have a cell to their
right or above. Therefore they are not removable corners.
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Property 17. Let � be ak + 1-core

(i) If � has a removable corner ofk + 1-residue i, then the collection of all removable
corners of� with k + 1-residue i forms ak + 1-string.

(ii) If � has an addable corner withk+1-residue i, then the collection of all addable corners
of � with k + 1-residue i forms ak + 1-string.

Proof. Letcandc′ be the leftmost and rightmost removable corners of� with k+1-residue
i and letc = c0 , c1 , c2 , . . . , cm = c′ be the extremal cells (withcj a k + 1-predecessor
of cj+1) lying betweenc andc′. By Property15(2a), eachcj lies at the top its column
since it is south-east ofc0 and by (1a) lies at the end of its row since it is north-west ofcm.
Therefore, eachcj is a removable corner.

To prove (ii), now letcandc′ be leftmost and rightmost addable corners withk+1-residue
i, and lete ande′ be the extremal cells immediately south-east ofc andc′, respectively.
With e = e0 , e1 , e2 , . . . , em = e′ the extremal cells (withej a k + 1-predecessor of
ej+1) lying betweeneande′, we claim that eachej is corner extremal. This follows from
Property 15(3). Indeed, eachej must have a cell to its right because it is south-east ofe
and must have a cell above because it is north-west ofe′. This forces the squarecj that is
immediately north-east ofej to be an addable corner of�. Since eachcj hask + 1-residue
i and is ak + 1-predecessor ofcj+1 it follows thatc = c0 , c1 , c2 , . . . , cm = c′ forms a
k + 1-string with headc and tailc′. �

Armed with these special properties ofk + 1-cores, we turn to the study of certain
operators that help us characterize thek-addable corners in thek-order, and that enable us to
identify thek-Young lattice with the weak order oñSk+1/Sk+1. Operators that add a corner
of given residue to partitions arose in [2,15], and coincide with those introduced in [16].
In the case of ak + 1-core, since there is never both a removable and addable corner with
the samek + 1-residue by Remark 16, we consider the operator [8] that deletes or adds all
such corners from elements inCk+1. That is,

Definition 18. The “operatorsi” acts on ak + 1-core by

(a) removing all removable corners withk + 1-residuei if there is at least one removable
corner ofk + 1-residuei,

(b) adding all addable corners withk + 1-residuei if there is at least one addable corner
with k + 1-residuei,

(c) leaving it invariant when there are no addable or removable corners ofk + 1-residuei.

We now give a number of properties that concern thesi operators, beginning with the
observation that they preserve the setCk+1. Note, some properties given here are implied
in [8], but we shall include all proofs for the sake of completeness.

Property 19. Let � be ak + 1-core.

(i) If � has an addable corner ofk + 1-residue i, thensi(�) is ak + 1-core whose shape is
obtained by adding all addable corners ofk + 1-residue i to�.
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(ii) If � has a removable corner ofk + 1-residue i, thensi(�) is a k + 1-core obtained by
deleting all removable corners ofk + 1-residue i from�.

Proof. Let c1, . . . , cn denote the collection of addable corners of� with k + 1-residue
i wherecj is a k + 1-predecessor ofcj+1 for j = 1, . . . , n − 1. By Definition 18, the
diagram ofsi(�) is obtained by addingc1, . . . , cn to �. Since� is a k + 1 core and no
hook of� is affected by the action ofsi unless it corresponds to a cell that lies in a column
or row containing somecj , it suffices to check that there are nok + 1-hooks in the rows
of si(�) containingcj (the columns will have nok + 1-hooks by the transpose of our
argument).

b a

•
•

x c1
•

•

First, there can only be ak + 1-hook in the row ofsi(�) containingc1 if � has ak-hook in
this row. Assume by contradiction that a cellx in the row withc1 has ak-hook in� (see the
figure). Leta /∈ � denote the lowest square at the top of the column containingx. Sincea
is not an addable corner (c1 is the highest addable corner ofk + 1-residuei), no cell lies
in the squareb to the left ofa. Thus, the hook ofb ∧ c1 is k + 1 contradicting that� is a
k + 1-core. Thereforex is not ak-hook. For rows corresponding tocj for j > 1, the cells
x = cj−1 ∧ cj have hook-lengthk in � by Property17 while cells to the right (left) ofx
are strictly smaller (larger) thank by Remark 1. However, sincesi(�) is obtained by adding
cj−1 andcj to �, the hook ofx is k + 2 in si(�) while the hooks to the right and left ofx
increase by one and are thus notk + 1.

The proof when there is a removable corner ofk+ 1-residuei in � follows similarly. �

Property 20. If � ∈ Ck+1 thens2
i (�) = � for all i ∈ {0, . . . , k}.

Proof. When there are no removable or addable corners ofk + 1-residuei, si is clearly an
involution. If � has at least one removable corner ofk + 1-residuei then by Property19(ii),
si(�) = � is the k + 1-core where all removable cornersc1, . . . , cn of k + 1-residuei
have been removed from�. Since Remark 16 implies that there can be no addable corners
of k + 1-residuei in �, c1, . . . , cn are exactly the addable corners of� andsi(�) = � by
Property 19(i). Similar reasoning proves thatsi is an involution if� has at least one addable
corner ofk + 1-residuei. �

In fact, thesi operators satisfy the affine Coxeter relations (see §8). We now conclude
this section with one last property.

Property 21. For anyi = 0, . . . , k andk + 1-core�, si(�) is ak + 1-core such that

(i) If c1, . . . , cn is thek + 1-string of removable corners withk + 1-residue i in�, then
the cellsc1 ∧ c2, . . . , cn−1 ∧ cn are the only cells whose hook exceeds k in� but is
k-bounded insi(�).
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(ii) If c1, . . . , cn is thek + 1-string of addable corners withk + 1-residue i in�, then the
cellsc1∧c2, . . . , cn−1∧cn are the only cells whose hook is k-bounded in� and exceeds
k in si(�).

Proof. In the case (ii) that� has addable cornersc1, . . . , cn of k + 1-residuei, letA denote
the set of cells with hooks exceedingk in � and letB denote such cells insi(�). Thus,
s ∈ B − A satisfieshs(�)�k andhs (si(�)) > k. However, sincesi(�) is ak + 1-core by
Property19 and thus has nok + 1-hooks, we havehs(�)�k andhs

(
si(�)

)
> k + 1. Since

si(�) is obtained from� by adding cornersci , the hook of any cellx in si(�) has two more
cells than the hook ofx in � only if x = cj ∧ c� for somej and�. However, of these, only
c1 ∧ c2, . . . , cn−1 ∧ cn have ak-bounded hook in� since theci are separated by hooks
of length�(k + 1) + k. This proves (ii) and (i) follows by replacing� ↔ si(�) and using
s2
i = id. �

6. k-Young lattice and k + 1-cores

Recall that the set of elements covered by� with respect to� is a subset of the partitions
obtained by removing a corner box from�. These partitions must also satisfy an additional
condition that concerns the number ofk-bounded hooks in thec(�). Equipped with the
previous discussion of cores and their properties, we are now in the position to precisely
understand how the number ofk-bounded hooks in ak+1-core changes under the action of
si . This then enables us to characterize thek-addable corners and consequently, the saturated
chains in thek-Young lattice.

Proposition 22. Given any k-bounded partition� and� = c(�),

si (�) =


c(� − er) where r is the highest row of� containing a removable

corner of residuei,
c(� + er) where r is the highest row of� containing an addable

corner of residuei,
� when� has no removable or addable corner of residuei.

(6.1)

Further,whensi does not act as the identity, it acts on� by removing/adding corners so that
every row and column of� andsi(�) has the same number of k-bounded cells except in one
row (and column) wheresi(�) has one fewer/more k-bounded cell then�. In particular, the
total number of k-bounded cells insi(�) is exactly onemore/fewer than in�when� contains
an addable/removable corner ofk + 1-residue i.

Proof. Let c1, . . . , cn be thek + 1-string of removable corners withk + 1-residuei in �.
Property21(i) reveals that then k-bounded cellsc1, . . . , cn in � are notk-bounded insi(�)
while then− 1 cellsc1 ∧ c2, . . . , cn−1 ∧ cn arek-bounded insi(�) but not in�. Therefore,
si acts on� by decreasing the number ofk-bounded cells only in the row containingc1 and
in the column containingcn sincecj ∧ cj+1 andcj+1 lie in the same row whilecj ∧ cj+1
andcj lie in the same column fori = 1, . . . , n − 1. Therefore, since� = c−1(�) indicates
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the number ofk-bounded hooks in rows of�, we have� − er = c−1(si(�)) wherer is the
highest row of� containing a removable corner (c1) of k + 1-residuei.

Replacing� ↔ si(�) and usings2
i = id proves the case withc1, . . . , cn the addable

corners. �

This given, we can characterize thek-addable corners.

Theorem 23. The order� can be characterized by the covering relation

� →k � ⇐⇒ � = � − er (6.2)

where r is any row ofc(�) with a removable corner whosek + 1-residue i does not occur
in a higher removable corner, in which casesi

(
c(�)

) = c(�). Equivalently, r can be char-
acterized as a row ofc(�) with an addable corner whosek + 1-residue i does not occur in
a higher addable corner.

Example 24. With k = 4 and� = (4,2,1,1),

c(4,2,1,1) =
1
2
3 4
4 0 1
0 1 2 3 4 0 1

(6.3)

and thus the partitions that are covered by� are(4,1,1,1), and(4,2,1), while those that
cover it are(4,2,1,1,1) and(4,2,2,1).

Proof. Assume thatr is a row ofc(�) with a removable cornera of k + 1-residuei. If no
removable corner ofc(�) with k+1-residuei lies higher thana, then Proposition22 implies
si
(
c(�)

) = c(� − er), and that the number ofk-bounded cells ofc(� − er) differs fromc(�)
in only one column where it is shorter by one. Therefore, by the definition ofk-conjugation,
(� − er)

�k ⊆ ��k , implying � − er →k �.
On the other hand, assume there is a removable cornerb of k + 1-residuei higher than

a. To prove(� − er)
�k���k (implying by definition that� − er �→k �), it suffices to

assumeb is ak + 1-predecessor ofa since Property 17 implies the removable corners form
ak + 1-string. Now we shall show that a column of�/k is shorter than the same column of
(�−er)/

k. The diagrams of�/k and(�−er)/
k coincide strictly above rowr by the recursive

method of constructing ak-skew diagram presented in Lemma 5 (i.e. Example 6). In row
r, the squarex = b ∧ a (see (6.4)) must satisfyk < hx(�/k)�k + 1 (orhx(�/k) = k + 1)
sinceb is ak + 1-predecessor ofa, both removable corners. Therefore, deleting a cell in
row r allowsx ∈ (� − er)/

k without producing a hook exceedingk. Thus the column with
x in � − er is longer than the corresponding column in�/k.

b

x a

−→ b

x a

. (6.4)

Finally, r can be equivalently characterized as the highest row inc(�) with an addable
corner of givenk + 1-residue since the addable corners ofc(�) are exactly the removable
corners ofc(�), given thatc(�) = si

(
c(�)

)
. �

Thus, we combine this result with Proposition22 to derive the following consequences:
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Corollary 25. Given k-bounded partitions� and�,

� →k � ⇐⇒ c(�) ⊂ c(�) and si
(
c(�)

) = c(�) for somei ∈ {0, . . . , k} . (6.5)

This given, we are now able to provide a core-characterization of the saturated chains
from the empty partition (hereafter∅ = �(0)) to anyk-bounded partition� � n:

Dk(�) =
{
(�(0), �(1), . . . , �(n) = �) : �(j) →k �(j+1)

}
. (6.6)

Corollary 26. The saturated chains to the vertex� � n in the k-lattice are given by

Dk(�)=
{
(�(0), �(1), . . . , �(n) = �) : c(�(j)) ⊂ c(�(j+1)) and

c(�(j+1)) = si

(
c(�(j))

)
for somei

}
.

7. Standard k-tableaux

Motivated by the proposed role ofk-lattice chains in the study of certain Macdonald
polynomial expansion coefficients, we pursue a tableaux interpretation for these chains. In
this section, we shall provide a bijection between the set of chainsDk(�) and a new family
of tableaux defined on cores. Following our discussion in §8 of the connection between the
k-lattice and weak order on affine permutations, a bijection from these tableaux to certain
reduced expressions will also be revealed.

7.1. Definition

Definition 27. A k-tableauT of shape� ∈ Ck+1 with n k-bounded hooks is a filling of�
with integers{1, . . . , n} such that

(i) rows and columns are strictly increasing,
(ii) repeated letters have the samek + 1-residue.

The set of allk-tableaux of shapec(�) is denoted byT k(�).

Example 28. T 3(3,2,1,1), or the set of 3-tableaux of shape(6,3,1,1), is

7
5
4 6 7
1 2 3 4 6 7

7
6
4 5 7
1 2 3 4 5 7

7
4
3 6 7
1 2 4 5 6 7

7
4
2 6 7
1 3 4 5 6 7

(7.1)

Our first task is to show that deleting all occurrences of the largest letter from a given
k-tableau produces a newk-tableau. For this we shall need yet another property about
cores.
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Property 29. Let� and� bek + 1-cores. If� ⊂ �, then the number of k-bounded hooks of
� is smaller than that of�.

Proof. Let n� andn� denote the number ofk-bounded hooks of thek + 1-cores� and�
respectively. If|�| = 1 then� = ∅ and we haven� = 1 while n� = 0. Now, assume the
result holds for allk + 1-cores� with n� < N , and consider a pair ofk + 1-cores� and
� such thatn� = N and� ⊂ �. For i thek + 1-residue of a removable corner of�, si(�)
is ak + 1-core whose number ofk-bounded hooks is less thanN sincensi(�) = n� − 1 by
Proposition22. Thus, if� ⊂ si(�) thenn� < nsi(�) < N by induction. Further, if� = si(�)
thenn� = nsi(�) < N . Finally, in the case that� /⊂ si(�), we havesi(�) ⊆ si(�) since any
cell of � not insi(�) is a removable corner of� of k+1-residuei. However,s2

i = id implies
thatsi(�) ⊂ si(�) and thus by induction,nsi(�) < nsi(�) ⇒ n� < n� by Proposition 22. �

Definition 30. For any partition	, let #(	) denote the smallest number such that there exists
ak + 1-core� with #(	) k-bounded hooks and	 ⊆ �.

Lemma 31. For any partition	, #(	) is the smallest number of letters needed to fill the
shape	 in such a way that

(i) rows and columns are strictly increasing,
(ii) repeated letters have the samek + 1-residue.

Proof. Let � be ak + 1-core with #(	) k-bounded hooks such that	 ⊆ � and letn be the
smallest number of letters needed to fill	 properly (i.e. satisfying conditions (i) and (ii)).

To show thatn�#(	), it suffices to find a proper filling of� using #(	) letters. Fori1 the
k + 1-residue of a removable corner of�, put letterN = #(	) in all removable corners of�
with residuei1. For i2 thek + 1-residue of a removable corner insi1(�), put letterN − 1
in all cells of� corresponding to corners ofsi1(�) with residuei2. By iteration, we obtain a
proper filling of� (and consequently of its subshape	) with N letters since Proposition22
implies that eachsj decreases the number ofk-bounded hooks by one.

To prove thatn�N , let T be a proper filling of the shape	 = 	(n+1) and consider the
tableaux of shape	(i) obtained by deleting the lettersi, . . . , n fromT (for i = n, . . . ,1). The
lemma will follow by showing that #(	(i))�#(	(i+1))− 1. That is, starting with #(	) = N ,
this would imply that #(	(n))�N − 1 and then #(	(n−1))�N − 2, and by iteration that the
empty partition	(1) satisfies #(	(1))�N − n. Therefore, 0�N − n.

Let a1, . . . , am denote the positions of the lettern in 	 and let	̄ be the partition	 minus
these cells. It remains to show that #(	̄)�#(	) − 1. Let �̄ and� denotek + 1-cores with
#(	̄) and #(	) k-bounded hooks, respectively, and where	̄ ⊆ �̄ and	 ⊆ �. Note that since
a1, . . . , am are removable corners of somek + 1-residuei in 	, they are addable corners of
	̄. Thus, these are either addable corners of�̄ or lie in �̄. If all a1, . . . , am ∈ �̄ then	 ⊆ �̄
implies #(	̄)�#(	) by definition of #(	). Otherwise, givenaj is an addable corner of̄�,
the number ofk-bounded hooksM of si(�̄) is #(	̄) + 1 by Proposition 22. However, since
	 ⊆ si(�̄), M�#(	) and we reach our claim.�

Proposition 32. Deleting all cells filled with the lettern = |�| from T ∈ T k(�) gives a
k-tableauT̄ ∈ T k(�), wherec(�) = si

(
c(�)

)
for i thek + 1-residue of the cells containing

the letter n.



66 L. Lapointe, J. Morse / Journal of Combinatorial Theory, Series A 112 (2005) 44–81

Proof. Let � be the shape ofT, and letT̄ beTwithout lettern. To prove thatT̄ is ak-tableau,
it suffices to show that the shape	 of T̄ is that of ak + 1-core. If i is thek + 1-residue of
some removable corner containing the lettern in T, thensi(�) is ak + 1-core withn − 1
k-bounded hooks by Proposition22 andsi(�) ⊆ 	. If we assume by contradiction that
	 is not ak + 1-core thensi(�) ⊂ 	. Thus, anyk + 1-core� containing	 also satisfies
si(�) ⊂ �. Therefore, Property 29 implies that� has morek-bounded hooks thansi(�) and
thus, #(	) > n− 1 by definition. Lemma 31 then leads to the contradiction saying thatT̄ of
shape	 cannot be properly filled withn−1 letters. Finally, since	 is ak+1-core, it cannot
have a removable and addable corner of the samek + 1-residue by Remark 16. Therefore,
given thati is thek + 1-residue of a removable corner in� containingn (thus an addable
corner in	), everyremovable corner of residuei in � containsn, implying 	 = si(�). �

7.2. Bijection: k-tableaux and saturated chains

We now introduce two maps that lead to our bijection between chainsDk(�) in the
k-lattice andk-tableauxT k(�).

Definition 33. For any pathP = (�(0), . . . , �(n)) ∈ Dk(�), let �(P ) be the tableau con-
structed by putting letter j in positionsc(�(j))

/
c(�(j−1)) for j = 1, . . . , n.

GivenT ∈ T k(�), let �̄(T ) = (�(0), . . . , �(n)) wherec(�(j)) is the shape of the tableau
obtained by deleting lettersj + 1, . . . , n fromT.

To compute the action of� on a path, we view the action ofc as a composition of maps
on a partition—first skew the diagram and then add the squares below the skew to obtain a
core.

Example 34. With k = 3:(
∅ , , , , , , ,

)
�

−→
←−̄
�

7
5
4 6 7
1 2 3 4 6 7

skew !

∅ , , , , , , ,

add

↔ ∅ , , , , , , ,

The example suggests that�−1 = �̄. This will indeed follow from the following lemmas:

Lemma 35. If P ∈ Dk(�), then�(P ) ∈ T k(�).

Proof. Since the only path inDk( ) isP = (∅, ), and�(P ) = 1 ∈ T k( ), we proceed
by induction on|�|. Assume that� sends any path of lengthn−1 to ak-tableau onn−1 letters
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and letP = (�(0), . . . , �(n)) ∈ Dk(�). The definition of� implies that�(P ) is obtained

by adding lettern to T n−1 = �(�(0), . . . , �(n−1)) in positionsc
(
�(n)

)/
c
(
�(n−1)

)
. Since

c
(
�(n)

)
= si

(
c(�(n−1))

)
for somei by Corollary26, these positions are the addable corners

of c(�(n−1)) with k + 1-residuei. Therefore, the lettersn in �(P ) all have the samek + 1-
residue and no two can occur in the same row or column. Thus�(P ) is ak-tableau of shape
c(�(n)) given that the subtableauT n−1 is ak-tableau by induction. �

Lemma 36. If T ∈ T k(�), then�̄(T ) ∈ Dk(�).

Proof. ConsiderT ∈ T k(�)and let�̄ (T ) = (�(0), . . . , �(n)). For allj, if c(�(j)) ⊂ c(�(j+1))

andsi(c(�
(j+1))) = c(�(j)) for somei, then�̄ (T ) ∈ Dk(�) by Corollary26. The definition

of �̄ implies thatc(�(n)) is the shape ofT, and further thatc(�(n−1)) is the shape ofTminus
all occurrences ofn. Clearlyc(�(j)) ⊂ c(�(j+1)), and furthersi

(
c(�(n))

) = c(�(n−1)) where
i is thek + 1-residue of the cells containingn by Proposition 32. Thus, the codomain of�̄
is Dk(�) by iteration. �

We are now set to prove that� is a bijection between saturated chains andk-tableaux.

Theorem 37. � is a bijection betweenDk(�) andT k(�) with�−1 = �̄.

Proof. From Lemmas35 and 36, it suffices to prove that� and�̄ are inverses. We start
by showing that̄��(P ) = P . Given�(�(0), . . . , �(n)) = T , we must show that if̄� (T ) =
(�(0), . . . , �(n)) thenc(�(�)) = c(�(�)) for � = 0, . . . , n. The definition of� implies that
shape(T ) = c(�(n)) and that the lettern lies in c(�(n))

/
c(�(n−1)). At the same time, the

definition of �̄ implies that shape(T ) = c(�(n)) andc(�(n−1)) is the shape of the tableau
obtained by deleting all occurrences of the lettern fromT. Therefore,c(�(n−1)) = c(�(n−1)).
By iteration,�̄�(P ) = P .

On the other hand, given̄�(T ) = (�(0), . . . , �(n)), we must show that if�(�(0), . . . , �(n))
= T̄ thenT̄ = T . The definition of� implies thatT̄ is the tableau obtained by filling the
cells ofc(�(j+1))/c(�(j)) with letterj + 1. However, by definition of̄�, c(�(j)) is the shape
obtained by deleting the lettersj + 1, . . . , N from T, andc(�(j+1)) is the shape obtained
by deletingj + 2, . . . , N fromT. Therefore, the cellsc(�(j+1))/c(�(j)) in T are filled with
letterj + 1. ThusT = T̄ . �

8. The k-Young lattice and the weak order onS̃k+1/Sk+1

In this section, we shall see how thek + 1-core characterization of thek-Young lattice
covering relations given in Corollary 25 leads to the identification of thek-Young lattice
as the weak order oñSk+1/Sk+1. A by-product of this result is a simple bijection between
reduced words andk-tableaux and one betweenk-bounded partitions and affine permutations
in S̃k+1/Sk+1.
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8.1. The isomorphism

To establish that thek-Young lattice is isomorphic to weak order on the set of minimal
coset representatives ofS̃k+1/Sk+1, we rely foremost on the fact[8] that thesi operators sat-
isfy the affine Coxeter relations (2.4), and thus provide a realization of the affine symmetric
group onk + 1-cores.

Property 38. Thesi operators satisfy

s2
i = id, sisj = sj si (i − j �= ±1 modk + 1) and sisi+1si = si+1sisi+1 .

(8.1)

The following map is then well defined:

Definition 39. For� ∈ S̃k+1, let s send� to ak + 1-core by

s : � = si1 · · · si� · ∅ , (8.2)

wherei1 · · · i� is any reduced word for� and∅ is the emptyk + 1-core.

A characterization for Bruhat order in terms of the containment of cores stemming from
this map is provided by Lascoux[8]. To be precise,

Proposition 40. The maps : S̃k+1/Sk+1 → Ck+1 is an isomorphism from Bruhat order on
S̃k+1/Sk+1 to Young order(⊆) onCk+1.

We are thus able to obtain from ourk + 1-core characterization of the chains in the
k-lattice that this lattice is isomorphic to the weak order onS̃k+1/Sk+1:

Corollary 41. Let�, � ∈ S̃k+1/Sk+1, and let� = p(s(�)) and� = p(s(�)). Then

� <·w � ⇐⇒ � →k � . (8.3)

Proof. Proposition40 implies a characterization of the covering relations for weak order
on S̃k+1/Sk+1. That is, sinces is a bijection and the weak order is a suborder of the Bruhat
order, we have for�, � ∈ S̃k+1/Sk+1

� <·w � ⇐⇒ s(�) ⊂ s(�) and si s(�) = s(�) for somei . (8.4)

The result thus follows from the characterization of→k given in Corollary25. �

8.2. Bijection: k-tableaux and reduced words

We have seen in Theorem 37 that the saturated chains to shape� in the k-lattice are
in bijection withk-tableaux of shapep(�). On the other hand, the reduced words for� ∈
S̃k+1/Sk+1 encode the chains to�. Corollary 41 thus implies there is a bijection between
k-tableaux of shape� and the reduced words fors−1(�).
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This bijection arises naturally by noting from Corollary26 that the association between a
k-tableau and chain(�(0), . . . , �(n) = �) in thek-Young lattice is determined by a sequence
in · · · i2 i1 such thatsij (c(�

(j−1))) = c(�(j)) for j = 1, . . . , n. However, this sequence can
also be viewed as a reduced word for the permutation� wheres(�) = c(�) by Eq. (8.4).
Therefore, the following map provides the desired bijection:

Definition 42. For ak-tableauTwithm letters whereia is thek + 1-residue of the lettera,
define

w : T �→ im · · · i1 .
Forw = im · · · i1 ∈ Red(�),w−1(w) is the tableau with letter� = 1, . . . , m occupying the
cells ofsi� · · · si1 · ∅/si�−1 · · · si1 · ∅.

Example 43. With k = 3

T =
7
6
4 5 7
1 2 3 4 5 7

w

↔ 1 2 0 3 2 1 0 since the 4-residues are
1
2
3 0 1
0 1 2 3 0 1

Proposition 44. The mapw : T k(�) −→ Red(�) is a bijection, where� ∈ S̃k+1/Sk+1 is
defined uniquely byc(�) = s(�).

We will now make use of canonical chains in thek-Young lattice to obtain a simple
bijection betweenk-bounded partitions and permutations inS̃k+1/Sk+1.

Definition 45. For any partition�, let “w�” be the word obtained by reading thek + 1-
residues in each row of�, from right-to-left, starting with the highest removable corner
and ending in the first cell of the first row. Further, let “��” be the affine permutation
corresponding tow�.

Example 46. For� = (3,2,2,1) andk= 3,w� = 1 3 2 0 3 2 1 0 and�� = ŝ1ŝ3ŝ2ŝ0ŝ3ŝ2ŝ1ŝ0
since

� =
1
2 3
3 0
0 1 2

(8.5)

Proposition 47. �� belongs toS̃k+1/Sk+1 ands(��) = c(�).

Proof. Consider� ∈ Pk. In light of Proposition44, it suffices to show that there is some
k-tableauT of shapec(�) wherew(T ) = w�. Note that Corollaries 26 and 37 implyw(T )
(of shapec(�)) is obtained from a certain chain(�(0), . . . , �(n) = �) in thek-Young lattice
by taking the sequencein · · · i2 i1 such thatsij (c(�

(j−1))) = c(�(j)) for j = 1, . . . , n. Now,
there exists a canonical saturated chainP� (and thus a canonical sequencein · · · i2 i1) such
that�(j) is obtained by removing the highest removable corner of�(j+1). The existence of
such a chain is ensured by Theorem 23 since the highest removable corner of a partition is
always the highest of itsk+1-residue. However, the highest removable corner of a partition
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� coincides with the highest removable corner ofc(�) and we therefore find thatin · · · i2 i1
is exactlyw�. �

Given the bijection betweenk-bounded partitions andk + 1-cores, this immediately
provides a bijection betweenk-bounded partitions and permutations inS̃k+1/Sk+1.

Corollary 48. The map� : Pk → S̃k+1/Sk+1 where�(�) = �� is a bijection whose
inverse is�−1 = p ◦ s.
Example 49. Given� ∈ S̃I4 with a reduced expressionw = 3 1 0 3 2 1 3 0, we construct
the shape

s3s1s0s3s2s1s3s0 · ∅ = 0 → 3
0

→ 3
0 1

→ 2
3
0 1 2

→ 2
3
0 1 2 3

→ 2
3 0
0 1 2 3 0

→
1
2
3 0 1
0 1 2 3 0 1

→
1
2 3
3 0 1
0 1 2 3 0 1

from which we read the number of 3-bounded hooks to obtain�−1(�) = (3,2,2,1).
Conversely,� can be recovered from(3,2,2,1) by using Example46 to find�(3,2,2,1) =
ŝ1ŝ3ŝ2ŝ0ŝ3ŝ2ŝ1ŝ0 (one easily checks that 3 1 0 3 2 1 3 0 and 1 3 2 0 3 2 1 0 are reduced words
for the same permutation).

The bijection�, although algorithmically distinct, turns out to be the same bijection
presented by Björner and Brenti [1].

9. Comparing elements differing by more than one box

Now that we have been able in §7 to explicitly understand the covering relation for the
k-order and to characterize the chains, it is natural to ask what can be said about the relation
among vertices differing by more than one box. In this section we shall prove that

If �/� and��k /��k are horizontal and vertical strips, respectively, then���.

A number of somewhat technical properties will lead us to this result and shall also be used
in our development of a semi-standard version of thek-tableaux corresponding to certain
chains in thek-Young lattice. We begin by continuing the study ofk+1-cores, concentrating
on pairs� ⊆ �.

Definition 50. Let � and� bek + 1-cores with� ⊆ �. A “ rowadder” is a cell s ∈ �/� such
that there is no cell in�/� that is ak + 1-predecessor ofs.

Two properties concerning the existence of rowadders are needed.

Property 51. If � and� arek + 1-cores with� ⊆ �, then�/� has a rowadder at the top of
the leftmost column that contains more than one cell.

Proof. Let b (of k + 1-residuei) denote the cell in�/� at the top of the leftmost column
with more than one cell. Note that ifx ∈ � lies immediately southwest ofb, then no cell of
� lies to the right ofx. Further, the diagram of�/� to the left ofb is a series of horizontal
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rows since columns to the left ofb have at most one cell.

b̄

b
x

(9.1)

Suppose by contradiction that there is a cellb̄ ∈ �/� that is ak + 1-predecessor ofb. Then
hb̄∧x(�) = k + 1, violating the assumption that� is ak + 1-core. �

Remark 52. For partitions� and�, �/� is a horizontal strip iff� ⊆ � and�r ��r+1 for all
r. Further,�/� is a vertical strip iff�r − �r ∈ {0,1} for all r.

Property 53. Consider� = c(�) and� = c(�)with � ⊆ �.Let� denote the leftmost column
of �/� with more than one cell.

(i) If there are rowadders in the top two cells of�/� in column�, then�/� is not a
horizontal strip.

(ii) If there is no rowadder in the second row of�/� in of column�, then��k���k .

Proof. (i) The number ofk-bounded hooks in rowr of � (resp.,�) is�r (resp.,�r ). Thus, by
Remark52, it suffices to prove that there are at least�r + 1 k-bounded hooks in rowr + 1
of � for somer. We shall consider the rowsr + 1 andr containing rowaddersa, b ∈ �/�. If
ā denotes the extremal cell of� that is ak + 1-predecessor ofa, then the extremal cell̄b of
� thatk + 1-precedesb either lies below or besidēa sinceā is extremal. However, if̄b lies
besideā, the hook ofb̄ ∧ b is k + 1 in thek + 1-core� implying this case does not occur.
Whenb̄ lies belowā, the squarêb to the right ofā is not in� sinceb̄ is extremal in� andb
is a rowadder:

ā b̂ ĉ

b̄

xa xc a c ← r + 1
yb xb b ← r

(9.2)

Notice that the hook ofxb = b̂ ∧ b in � is k-bounded while the hook ofyb = b̄ ∧ b in �
exceedsk. Therefore,�r is the number of cells strictly betweenyb andb (equivalently,xa
anda). To determine the number ofk-bounded hooks of�, let c denote the last cell in row
r + 1 of � and ĉ the square ak + 1-predecessor ofc in the row with b̂. Sinceĉ does not
belong to�, the hook length ofxc = ĉ ∧ c is at mostk + 1. But because� is ak + 1-core,
xc = ĉ ∧ c thus has ak-bounded hook in� as do all the cells of� to the right ofxc. Given
that the number of cells strictly betweenxc andc equals the number of cells,�r , strictly
betweenxa anda, we have at least�r + 1 k-bounded hooks in rowr + 1 of � as claimed.

(ii) Since the number ofk-bounded hooks in a column of� (resp.,�) corresponds to a row
of ��k (resp.,��k ), to prove��k �⊆ ��k , it suffices to show that there are morek-bounded
hooks in some column of� than in that column of�. Let a (of k + 1-residuei) denote the
top cell in the first column�a of �/� containing more than one cell. By assumption, the cell
b belowa is not a rowadder and thus there is a cellb̄ ∈ �/� of the samek + 1-residue as
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b to the left of column�a . Hence the squarēa aboveb̄ hask + 1-residuei and since the
diagram of�/� to the left of column�a is a series of horizontal rows,ā /∈ �/�.

ā

b̄

xa a
xb b

(9.3)

Sinceā andahave the samek+1-residue, the cellxa = ā∧a has hook-length bounded by
k in � and at leastk+1 in�. Similarly for the cellxb = b̄∧b. Therefore, in the column with
xa , b̄ ∈ � is the onlyk-bounded hook in� that is not in� while xa andxb arek-bounded
hooks in� that are notk-bounded in�. We reach our claim since� has at least one more
k-bounded hook than� in this column. �

We shall say that�, � areadmissibleiff �/� and��k /��k are, respectively, horizontal
and vertical strips, i.e. iff�, � arer-admissible for somer.

Proposition 54. If �, � ∈ Pk forms an admissible pair, then c(�)/c(�) is a horizontal
strip.

Proof. Given�, � is an admissible pair, we have�/� is a horizontal strip and��k /��k is a
vertical strip. In particular,� ⊆ � and by Property14,c(�) ⊆ c(�). Now, assume by contra-
diction thatc(�)/c(�) contains some column with more than one cell. The top cellc of the
leftmost such column must be a rowadder by Property 51. If the cellc̄ belowc is a rowadder,
then this column contains two rowadders implying by Property 53(i) that�/� is not a hori-
zontal strip. On the other hand, ifc̄ is not a rowadder, then��k���k by Property 53(ii) and
thus ��k /��k is not a vertical strip. Either case gives a
contradiction. �

Lemma 55. Let � and� be k + 1-cores where no column has more k-bounded hooks in
� than in�, and where�/� is a horizontal strip. With i denoting thek + 1-residue of the
rightmost cell in�/�, the removable corners ofk + 1-residue i in� are exactly the cells of
k + 1-residue i in�/�.

Proof. Let a1 (of k + 1-residuei) denote the rightmost cell in�/� and note thata1 is a
removable corner since�/� is a horizontal strip. Ifa1 is not a rowadder of�/�, then there
is a cella2 ∈ �/� that is ak + 1-predecessor ofa1. Similarly, if a2 is not a rowadder then
there is a cella3 ∈ �/� which is ak+1-predecessor ofa2. By iteration, we eventually reach
a rowadderam ∈ �/�, and have thek + 1-stringa1, a2, . . . , am of cells withk + 1-residue
i. Note thata1, . . . , am are all extremal cells of� since they lie in the horizontal strip�/�.
Furthermore, no cell lies to the right ofa1 implying that no cell lies to the right of any
extremal cell withk + 1-residuei abovea1, by Property15. Therefore,a1, . . . , am are all
removable corners of�. It thus remains to show that any extremal cell ofk + 1-residuei in
� aboveam or belowa1 is not removable.

The diagrams of� and� coincide south-east ofa1, givena1 is the rightmost element of
�/�. If a1 is a k + 1-predecessor of an extremal celld, then a cell must lie to right-hand
side ofd since otherwise,ha1∧d(�) = k + 1 in thek + 1-core�. Property 15 thus implies
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that all extremal cells ofk + 1-residuei lying south-east ofd also have a cell to their right.
Therefore, there are no removable corners ofk + 1-residuei south-east ofa1.

Similarly by Property15, our claim will follow by showing that there is a cellb ∈ �
above the extremal cellam+1 ∈ � that is ak + 1-predecessor ofam. Supposeb /∈ �. Then
the hook length ofam+1∧am is k+2 in� sinceam+1 and the removable corneram have the
samek + 1-residue, but isk-bounded in� sinceam /∈ � and� has nok + 1-hooks. Note that
the column containingam+1 is of the same length in� as in� sinceb /∈ � andam+1 /∈ �/�.
Therefore,� has morek-bounded hooks in this column contradicting our assumption.�

Theorem 56. If �, � is n-admissible, then there are distinct integersi1, . . . , in where

c(�) = si1 · · · sin
(
c(�)

)
.

Proof. Since��k
r is the number ofk-bounded hooks in columnr of � = c(�), given that�, �

isn-admissible, no column has morek-bounded hooks in� = c(�) than in� = c(�). Further,
�/� is a horizontal strip by Proposition54. Therefore, ifiN denotes thek+ 1-residue of the
rightmost cellaN ∈ �/�, then Lemma 55 implies that the diagramsiN (�)/� can be obtained
by deleting all cells ofk + 1-residueiN from �/� and is thus a skew diagram with no more
than one cell in each column.

We now claim that no column has morek-bounded hooks in� than insiN (�). Proposi-
tion 22 gives thatsiN (�) has the same number ofk-bounded hooks as� in every column
except the one containing the cellaN , where it has one fewer. Since no column has more
k-bounded hooks in� than in�, it suffices to show that in the column withaN , � does not
have morek-bounded hooks thansiN (�). This follows by noting that weakly to the right of
the column withaN , siN (�) and� coincide.

Therefore we can use Lemma 55 to prove thatsiN−1(siN (�))/� can be obtained by deleting
all cells ofk+1-residueiN andiN−1 from�/�. By iterating the preceding argument, there is
someNwheresi1 · · · siN (�)/� is the empty partition implying that� = si1 · · · siN (�). Since
each iteration causes the removal of all cells with a givenk+1-residue from�/�, i1, . . . , iN
are distinct. Further, since the number ofk-bounded hooks in� is lowered by one each time
by Proposition 22,N = |�| − |�| = n. �

Using this result, Corollary 25 implies

Corollary 57. If �, � is an admissible pair, then���.

We conclude this section with another set of conditions under which���.

Theorem 58. If � ⊆ �, ��k ⊆ ��k , andc(�)/c(�) is a horizontal strip, then�, � is admis-
sible.

Proof. We start by showing that�/� is a horizontal strip, or equivalently by Remark52,
that the number ofk-bounded hooks in rowr of � = c(�) is not smaller than the number of
k-bounded hooks in rowr + 1 of � = c(�).

In row r of �, let yr denote the last cell and letxr be the rightmost cell with a hook
exceedingk. Note thathxr (�) > k+ 1 since� is ak+ 1-core. If there ared − 1 cells strictly
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betweenxr andyr , then� hasd k-bounded hooks in rowr. It thus remains to prove that
there are no more thand k-bounded hooks in rowr + 1 of �. In row r + 1 of �, let ya be
the last cell and letxa be the cell so that there ared − 1 cells betweenxa andya (if xa /∈ �
then�r+1�d and the claim holds).

xa ya

xr yr ← row r

Note thatxa lies weakly to the left ofxr sinceya lies weakly to the left ofyr given�/� is a
horizontal strip. Thus, the number of cells abovexa in � is weakly greater than�r −1 for �r
the number of cells abovexr in the partition�. Since� ⊆ �, the number of cells�a above
xa in � satisfies�a ��r − 1. Hence,hxa (�) = �a + d + 1��r + d = hxr (�)− 1 > k. That
is,hxa (�) exceedsk. Therefore the maximal number ofk-bounded hooks in rowr + 1 of �
is d.

To see that��k /��k is a vertical strip, note that�/� has at most one box in every column.
Thus, the number ofk-bounded hooks in a column of� cannot exceed the number ofk-
bounded hooks in that column of� by more than one since� ⊆ � implies any hook exceeding
k in � must exceedk in �. Now, recall that the number ofk-bounded hooks in the columns
of � and� are��k and��k , respectively. Given��k ⊆ ��k , this leads to��k

r − ��k
r ∈ {0,1}

for all r—conditions that are equivalent to��k
/
��k being a vertical strip. �

10. Generalizedk-tableaux and thek-Young lattice

We now introduce a set of tableaux that serve as a semi-standard version ofk-tableaux.

Definition 59. Let � be ak + 1-core,mbe the number ofk-bounded hooks of�, and� =
(�1, . . . , �r ) be a composition ofm. A semi-standardk-tableau of shape� and evaluation�
is a filling of � with integers 1,2, . . . , r such that

(i) rows are weakly increasing and columns are strictly increasing,
(ii) the collection of cells filled with letteri are labeled with exactly�i distinctk+1-residues.

We denote the set of all semi-standardk-tableaux of shapec(�) and evaluation� byT k
� (�).

When� = (1m), we call thek-tableaux “standard”. In this case,T k
(1m)(�) is the setT k(�)

of k-tableaux introduced in §7. Hereafter, a semi-standardk-tableau will simply be referred
to as ak-tableau.

Example 60. For k = 3, T 3
(1,3,1,2,1,1)(3,3,2,1) of shapec ((3,3,2,1)) = (8,5,2,1) is

the set

5
4 6
2 3 4 4 6
1 2 2 2 3 4 4 6

6
4 5
2 3 4 4 5
1 2 2 2 3 4 4 5

4
3 6
2 4 4 5 6
1 2 2 2 4 4 5 6

(10.1)
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10.1. Standardizing and deleting a letter from k-tableaux

As with the standardk-tableaux, we shall prove that deleting some letter from ak-tableau
produces anotherk-tableau. To this end, we present a method for constructing a standard
k-tableau from a givenk-tableau of the same shape.

Definition 61. For � a composition ofm andT ∈ T k
� (�), defineSt (T ) by the iterative

process
If a is the biggest letter ofT, let i denote thek + 1-residue of the rightmost cell inT

that containsa. Construct a tableaūT by replacing each occurrence of letterawith k + 1-
residuei by the letterm. Now, leta denote the biggest letter (smaller thanm) in T̄ and i
thek + 1-residue of the rightmost cell in̄T that containsa. Again construct a new tableau
by replacing each occurrence of letterawith k + 1-residuei by the letterm − 1. St (T ) is
the tableau obtained by iterating this process until each collection of repeated letters forms
only onek + 1-string. That is,St (T ) ∈ T k

1m(�).

Example 62. Given a k-tableauT ∈ T 3
(1,3,1,2,1,1)(3,3,2,1) of shapec (3,3,2,1) =

(8,5,2,1)

T =
5
4 6
2 3 4 4 6
1 2 2 2 3 4 4 6

4-residues=
1
2 3
3 0 1 2 3
0 1 2 3 0 1 2 3

Every lettera = 6 of residuei = 3 is replaced bym = 9:
5
4 9
2 3 4 4 9
1 2 2 2 3 4 4 9

Then lettersa = 5 of residuei = 1 are replaced bym = 8:
8
4 9
2 3 4 4 9
1 2 2 2 3 4 4 9

Then lettersa = 4 of residuei = 2 are replaced bym = 7:
8
7 9
2 3 4 7 9
1 2 2 2 3 4 7 9

Then lettersa = 4 of residuei = 1 are replaced bym = 6:
8
7 9
2 3 6 7 9
1 2 2 2 3 6 7 9

Similarly,
a=3,i=0

−→
m = 5

8
7 9
2 5 6 7 9
1 2 2 2 5 6 7 9

a=2,i=3
−→

m = 4

8
7 9
4 5 6 7 9
1 2 2 4 5 6 7 9

a=2,i=2
−→

m = 3

8
7 9
4 5 6 7 9
1 2 3 4 5 6 7 9

Once the tableau is standard, the stepa = 2, i = 1,m = 2 followed bya = 1, i = 0,m = 1
does not change the tableau.
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Proposition 63. LetT ∈ T k
(�1,...,�m)

(�). The tableau obtained by deleting the letter m from

T belongs toT k
(�1,...,�m−1)

(�) for some��� with |�| − |�| = �m.

Proof. Let T̂ denote the tableau obtained by deleting the lettermfromT. Since Conditions (i)
and (ii) of ak-tableau clearly hold for̂T , it suffices to show that the shape ofT̂ is given
by c(�) for some���. To this end, considerSt (T ), the standardk-tableau of shapec(�)
associated toT. Deleting the largest letter fromSt (T ) gives ak-standard tableau of shape
si�m

(
c(�)

)
by Proposition32. By iteration, removing the largest�m letters fromSt (T )

gives a standardk-tableauT̄ of shapesi1 · · · si�m
(
c(�)

)
, wherei1, . . . , i�m are, respectively,

the k + 1-residues of the�m largest letters inSt (T ). SinceT̂ has the same shape asT̄ ,
T̂ ∈ T k

(�1,...,�m−1)
(�) wherec(�) = si1 · · · si�m

(
c(�)

)
. Further,��� by Corollary 25 and

|�| − |�| = �m by Proposition 22. �

It is known (e.g. [3]) that there are no semi-standard tableaux of shape� and
evaluation� when� � � in dominance order. We have found that this is also true for the
k-tableaux.

Remark 64. There are nok-tableaux inT k
� (�) when�(�) < �(�) since any element of

T k
� (�) has height�(�), has only�(�) distinct letters, and must be strictly increasing in

columns.

Theorem 65. There are no semi-standard k-tableaux inT k
� (�) when� � �. Further, there

is exactly one when� = �.

Proof. Consider�, � ∈ Pk with |�| = |�|. We shall proceed by induction on the length of
�. A k-tableau of evaluation� = (�1) must be of shapec(�) where�(�)��(�) by Remark
64. Therefore,� = (�1) and the claim holds. Assume the assertion holds when�(�) < N .

Consider� = (�1, . . . , �N) and� = (�1, . . . , �N̄ ) with � � �. That is,�1 + · · · + �j >

�1 + · · · + �j for somej �N . Suppose by contradiction that there is someT ∈ T k
� (�).

The previous proposition implies that removing the letterN from T results in ak-tableau
T̄ ∈ T k

�̄=(�1,...,�N−1)
(�̄) where�̄��. Thus,c(�̄) = si1 · · · si�N

(
c(�)

)
for somei1, . . . , i�N

by Corollary 25. Since�(�̄) < N , the induction hypothesis implies̄� � �̄. Therefore
�1 + · · · + �r � �̄1 + . . .+ �̄r for all r�N − 1. Further,̄�i ��i by Proposition 22 since the
sij act by deleting removable corners starting withc(�), and thus�1+· · ·+�r ��1+. . .+�r
for all r�N − 1. Therefore,�1 + · · · + �N > �1 + · · · + �N given� � �. However, since
|�| = |�|, |�| > �1 + · · · + �N implies �(�) > �(�). We thus reach a contradiction by
Remark 64.

To see that there is exactly onek-tableauT ∈ T k
� (�), we shall first show by induction that

there can be no more than one such tableau for� = (�1, . . . , �N). Delete the letterN from
T to obtain ak-tableauT̄ ∈ T k

�̂=(�1,...,�N−1)
(�̄) wherec(�̄) = si1 · · · si�N

(
c(�)

)
. Remark 64

implies that�(�̄)��(�̂) = N − 1. Since exactly�N cells were removed from� to obtain�̄,
and the length of� was decreased by at least one, thei1, . . . , i�N are uniquely determined
and correspond to thek+1-residues in the top row ofc(�). Thus, for two distinctk-tableaux
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in T k
� (�) to exist, two distinctk-tableaux inT k

�̂
(�̂) are necessary. By induction this is a

contradiction.
We prove that there is in fact always ak-tableauT ∈ T k

� (�) by construction: start

with uniquek-tableau of shape and evaluation(�1). For j �1, let�(j) = (�1, . . . , �j ) and
consider thek-tableau of shapec(�(j)) and evaluation�(j). Add the letterj + 1 in all
positionssi�j+1

· · · si1
(
c(�(j))

)/
c(�(j)) wherei� is thek+1-residue of the square(j +1, �)

of �(j) for � = 1, . . . , �j+1. �

10.2. Bijection: generalized k-tableaux and chains in the k-lattice

A rule for expanding the product of ak-Schur function with the homogeneous function
h� (for ��k) in terms ofk-Schur functions was conjectured in[11]. We introduce certain
sequences of partitions based on this generalized Pieri rule and show their connection to
the semi-standardk-tableaux. The connection with symmetric functions is then discussed
in §11.

Recall from the introduction that a pair ofk-bounded partitions�, � is “r-admissible” if
and only if�/� and��k /��k are, respectively, horizontal and verticalr-strips. For compo-

sition �, a sequence of partitions
(
�(0), �(1), · · · , �(r)

)
is “�-admissible” if�(j), �(j−1) is

a �j -admissible pair for allj. This given, since Corollary 57 implies that if�(j), �(j−1) is
�j -admissible then�(j−1)��(j), we have that any�-admissible sequence must be a chain
in thek-Young lattice. We are interested in the set of chains:

Definition 66. For any composition�, let

Dk
�(�) =

{
(∅ = �(0), . . . , �(r) = �) that are �-admissible

}
.

We now give a bijection between the set of chains inDk
�(�) and the tableaux inT k

� (�).

Definition 67. For anyP = (�(0), �(1), . . . , �(m)) ∈ Dk
�(�), let �(P ) be the tableau of

shapec(�) where letterj fills cells in positionsc(�(j))/c(�(j−1)), for j = 1, . . . , m.

Proposition 68. If P ∈ Dk
�(�), then�(P ) ∈ T k

� (�).

Proof. If P = (�(0), �(1), . . . , �(m)) ∈ Dk
�(�) then�(P ) has the shape of thek + 1-core

c(�). It thus suffices to prove that�(P ) is column strict and has�j distinctk + 1-residues
that are filled with the letterj. Since�(j), �(j−1) is �j -admissible by definition ofDk

�(�),
Theorem56 implies thatsi1 · · · si�j

(
c(�(j−1))

) = c(�(j)) for some collection of distinct

integersi1, . . . , i�j and Proposition 54 implies thatc(�(j))/c(�(j−1)) is a horizontal strip.
�(P ) is thus column strict since the letterj lies only in a horizontal strip. Further, given
that each of the�j operatorssit adds addable corners of residueit , the letterj occupies�j
distinctk + 1-residues sincei1, . . . , i�j are distinct. �
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Definition 69. For ak-tableauT ∈ T k
� (�) with � = (�1, . . . , �m), let �̄(T ) = (�(0), . . . ,

�(m)), wherec(�(i)) is the shape of the tableau obtained by deleting the lettersi + 1, . . . , m
fromT.

Proposition 70. If T ∈ T k
� (�), then�̄(T ) ∈ Dk

�(�).

Proof. Letting �̄(T ) = (�(0), . . . , �(m)), the definition of�̄ implies that the tableauxT i

obtained by deleting lettersi + 1, . . . , m from T have corresponding shapesc(�(i)). By
Proposition63, theT i arek-tableaux. In particular,T i has strictly increasing columns.
Thus sinceT i−1 is obtained by deleting letteri from T i , c(�(i))/c(�(i−1)) is a horizontal
strip and further, by Proposition 63,�(i−1)��(i) with |�(i)|−|�(i−1)| = �i . Property 13 then
implies that�(i−1) ⊆ �(i) and(�(i−1))�k ⊆ (�(i))�k . Therefore�(i), �(i−1) are�i-admissible
by Theorem 58 and we have that�̄(T ) ∈ Dk

�(�). �

Theorem 71. � is a bijection betweenT k
� (�) andDk

�(�), with�−1 = �̄.

Proof. Given Propositions68 and 70, we only have to show that ifP ∈ Dk
�(�) andT ∈

T k
� (�), then�(�̄(T )) = T and�̄(�(P )) = P . This follows from the same deleting–filling

letter argument given in the proof of Theorem 37.�

11. Symmetric functions andk-tableaux

Refer to Macdonald [14] for details on symmetric functions and Macdonald polyno-
mials. Here, we are interested in the study of theq, t-Kostka polynomialsK��(q, t) ∈
N[q, t]. These polynomials arise as expansion coefficients for the Macdonald polynomials
J�[X; q, t] in terms of a basis dual to the monomial basis with respect to the Hall–Littlewood
scalar product. As in the introduction, we use the modification ofJ�[X; q, t] whose expan-
sion coefficients in terms of Schur functions are theq, t-Kostka coefficients:

H�[X; q, t] =
∑
�

K��(q, t) s�[X] . (11.1)

The q, t-Kostka coefficients also have a representation theoretic interpretation[4], from
which they were shown [6] to lie inN[q, t]. SinceJ�[X; q, t] reduces to the Hall–Littlewood
polynomialQ�[X; t] whenq = 0, we obtain a modification of the Hall–Littlewood poly-
nomials by taking:

H�[X; t] = H�[X; 0, t] =
∑
�� �

K��(t) s�[X] , (11.2)

with the coefficientsK��(t) ∈ N[t] known as Kostka–Foulkes polynomials. We can then
obtain the homogeneous symmetric functions by lettingt = 1:

h�[X] = H�[X; 1] =
∑
�� �

K�� s�[X] , (11.3)

whereK�� ∈ N are the Kostka numbers.
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Recent work in the theory of symmetric functions has led to a new approach in the study of
theq, t-Kostka polynomials. The underlying mechanism for this approach relies on a family
of polynomials that appear to have a remarkable kinship with the classical Schur functions
[9,11,12]. More precisely, consider the filtration�(1)

t ⊆ �(2)
t ⊆ · · · ⊆ �(∞)

t = �, given by
linear spans of Hall–Littlewood polynomials indexed byk-bounded partitions. That is,

�(k)
t = L{H�[X; t]}�;�1 �k , k = 1,2,3, . . . .

A family of symmetric functions called thek-Schur functions,s(k)� [X; t], was introduced in
[11] (these functions are conjectured to be precisely the polynomials defined using tableaux
in [9]). It was shown that thek-Schur functions form a basis for(k)

t and that, for� a
k-bounded partition,

H�[X; q, t ] =
∑

�;�1 �k

K
(k)

�� (q, t) s
(k)
� [X; t ] , K

(k)

�� (q, t) ∈ Z[q, t] (11.4)

and

H�[X; t ] = s
(k)

� [X; t ] +
∑

�;�1 �k

�>D�

K
(k)

�� (0, t) s
(k)
� [X; t ] , K

(k)

�� (0, t) ∈ Z[t] .

(11.5)

The study of thek-Schur functions is motivated in part by the conjecture[9,11] that the
expansion coefficients actually lie inN[q, t]. That is,

K
(k)

�� (q, t) ∈ N[q, t] . (11.6)

Since it was shown thats(k)� [X; t] = s�[X] for k larger than the hook-length of�, this conjec-

ture generalizes Eq. (11.1). Also, there is evidence to support thatK��(q, t)−K
(k)

�� (q, t) ∈
N[q, t], suggesting that thek-Schur expansion coefficients are simpler than theq, t-Kostka
polynomials.

The preceding developments on thek-lattice can be applied to the study of the generalized
q, t-Kostka coefficients as follows: thek-Schur functions appear to obey a generalization
of the Pieri rule on Schur functions. To be precise, it was conjectured in [9,11] that for the
complete symmetric functionh�[X],

h�[X] s(k)� [X; 1] =
∑

�∈E(k)

�,�

s(k)� [X; 1] , (11.7)

where

E
(k)

�,� = {
� | �/� is a horizontal�-strip and��k /��k is a vertical�-strip

}
. (11.8)

Iteration, froms
(k)
∅ [X; 1] = 1, then yields that the expansion ofh�1[X]h�2[X] · · · satisfies

h�[X] =
∑
�

K
(k)

�� s(k)� [X; 1] , (11.9)
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whereK(k)

�� is a nonnegative integer reducing to the usual Kostka numberK�� whenk is

large sinces(k)� [X; t] = s�[X] in this case. The definition ofE(k)

�,� in thek-Pieri expansion
thus reveals the motivation behind the set of chains given in Definition66. This connection
implies that

K
(k)

�� = the number of chains of thek-lattice inDk
�(�) .

Equivalently, using the bijection between chains inDk
�(�) andT k

� (�) given in Theorem71,
we have

K
(k)

�� = the number ofk-tableaux of shapec(�) and evaluation� .

Although this combinatorial interpretation relies on the conjectured Pieri rule (11.7), it was
proven in [11] that thek-Schur functions are unitriangularly related to the homogeneous
symmetric functions. That is,K(k)

�� = 0 when� � � andK(k)

�� = 1. Therefore, Theorem 65

implies that the number ofk-tableaux does correspond toK(k)

�� in these cases.
More generally, note that lettingq = 0 in Eq. (11.6) gives that the coefficients in Hall–

Littlewood expansion Eq. (11.5) satisfyK(k)

�� (0, t) ∈ N[t]. However, sinceH�[X; 1] =
h�[X], we have thatK(k)

�� (0,1) = K
(k)

�� from Eq. (11.9). Therefore, since it appears thatK
(k)

��

counts the number of semi-standardk-tableaux inT k
� (�), it is suggested that there exists

a t-statistic on suchk-tableaux giving a combinatorial interpretation for the generalized
Kostka–FoulkesK(k)

�� (0, t).

Alternatively, H�[X; 1,1] = h1n [X] for � � n implies thatK(k)

�� (1,1) = K
(k)
� 1n by

Eq. (11.9). This lends support to the idea that aq, t-statistic on the standardk-tableaux
that would account for the apparently positive coefficientsK

(k)

�� (q, t) in Eq. (11.6). That is,

K
(k)

�� (1,1) = the number of standardk-tableaux of shapec(�) .

Equivalently, our bijection between affine permutations and standardk-tableaux suggests
there may be aq, t-statistic on reduced words that would account for the positivity:

K
(k)

�� (1,1) = the number of reduced words of�� ∈ S̃k+1/Sk+1 .

We mention one final consequence of thek-Pieri rule. For� a partition of lengthn, the
producth�1 · · ·h�n giving h� can be written in any order since the functions commute.
Therefore,

h�[X] =
∑
�

K
(k)

�� s(k)� [X; 1] . (11.10)

for any reordering� of the entries of�. Therefore,K(k)

�� is also the number of chains in

Dk
�(�). Equivalently,K(k)

�� is the number ofk-tableaux inT k
� (�). Thus, conjecture (11.7)
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implies:

If � is a rearrangement of�, then
∣∣T k

� (�)
∣∣ = ∣∣T k

� (�)
∣∣. Equivalently, the number of

k-tableaux inT k
� (�) equals the number ofk-tableaux inT k

� (�).

This conjecture suggests that there is a generalization of the Bender–Knuth involution
on semi-standard tableaux that permutes the evaluation ofk-tableaux accounting for this
phenomenon. See[19] for this new involution and thus the proof of this conjecture.
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