14,800 research outputs found

    On the chain length dependence of local correlations in polymer melts and a perturbation theory of symmetric polymer blends

    Full text link
    The self-consistent field (SCF) theory of dense polymer liquids assumes that short-range correlations are almost independent of how monomers are connected into polymers. Some limits of this idea are explored in the context of a perturbation theory for mixtures of structurally identical polymer species, A and B, in which the AB pair interaction differs slightly from the AA and BB interaction, and the difference is controlled by a parameter alpha Expanding the free energy to O(\alpha) yields an excess free energy of the form alpha z(N)ϕAϕBz(N)\phi_{A}\phi_{B}, in both lattice and continuum models, where z(N) is a measure of the number of inter-molecular near neighbors of each monomer in a one-component liquid. This quantity decreases slightly with increasing N because the self-concentration of monomers from the same chain is slightly higher for longer chains, creating a deeper correlation hole for longer chains. We analyze the resulting NN-dependence, and predict that z(N)=z∞[1+βNˉ−1/2]z(N) = z^{\infty}[1 + \beta \bar{N}^{-1/2}], where Nˉ\bar{N} is an invariant degree of polymerization, and β=(6/π)3/2\beta=(6/\pi)^{3/2}. This and other predictions are confirmed by comparison to simulations. We also propose a way to estimate the effective interaction parameter appropriate for comparisons of simulation data to SCF theory and to coarse-grained theories of corrections to SCF theory, which is based on an extrapolation of coefficients in this perturbation theory to the limit N→∞N \to \infty. We show that a renormalized one-loop theory contains a quantitatively correct description of the NN-dependence of local structure studied here.Comment: submitted to J. Chem. Phy

    Quantized Non-Abelian Monopoles on S^3

    Full text link
    A possible electric-magnetic duality suggests that the confinement of non-Abelian electric charges manifests itself as a perturbative quantum effect for the dual magnetic charges. Motivated by this possibility, we study vacuum fluctuations around a non-Abelian monopole-antimonopole pair treated as point objects with charges g=\pm n/2 (n=1,2,...), and placed on the antipodes of a three sphere of radius R. We explicitly find all the fluctuation modes by linearizing and solving the Yang-Mills equations about this background field on a three sphere. We recover, generalize and extend earlier results, including those on the stability analysis of non-Abelian magnetic monopoles. We find that for g \ge 1 monopoles there is an unstable mode that tends to squeeze magnetic flux in the angular directions. We sum the vacuum energy contributions of the fluctuation modes for the g=1/2 case and find oscillatory dependence on the cutoff scale. Subject to certain assumptions, we find that the contribution of the fluctuation modes to the quantum zero point energy behaves as -R^{-2/3} and hence decays more slowly than the classical -R^{-1} Coulomb potential for large R. However, this correction to the zero point energy does not agree with the linear growth expected if the monopoles are confined.Comment: 18 pages, 5 figures. Minor changes, reference list update

    Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness

    Get PDF
    Studying the problem of wave propagation in media with resistive boundaries can be made by searching for "resonance modes" or free oscillations regimes. In the present article, a simple case is investigated, which allows one to enlighten the respective interest of different, classical methods, some of them being rather delicate. This case is the 1D propagation in a homogeneous medium having two purely resistive terminations, the calculation of the Green function being done without any approximation using three methods. The first one is the straightforward use of the closed-form solution in the frequency domain and the residue calculus. Then the method of separation of variables (space and time) leads to a solution depending on the initial conditions. The question of the orthogonality and completeness of the complex-valued resonance modes is investigated, leading to the expression of a particular scalar product. The last method is the expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies depending on the frequency. Results of the three methods generalize or/and correct some results already existing in the literature, and exhibit the particular difficulty of the treatment of the constant mode

    Finite Temperature Spectral Densities of Momentum and R-Charge Correlators in N=4\N=4 Yang Mills Theory

    Full text link
    We compute spectral densities of momentum and R-charge correlators in thermal N=4\N=4 Yang Mills at strong coupling using the AdS/CFT correspondence. For ω∼T\omega \sim T and smaller, the spectral density differs markedly from perturbation theory; there is no kinetic theory peak. For large ω\omega, the spectral density oscillates around the zero-temperature result with an exponentially decreasing amplitude. Contrast this with QCD where the spectral density of the current-current correlator approaches the zero temperature result like (T/ω)4(T/\omega)^4. Despite these marked differences with perturbation theory, in Euclidean space-time the correlators differ by only ∼10\sim 10% from the free result. The implications for Lattice QCD measurements of transport are discussed.Comment: 18 pages, 3 figure

    Double-Edged Secrets

    Get PDF

    Elastic response of a nematic liquid crystal to an immersed nanowire

    Full text link
    We study the immersion of a ferromagnetic nanowire within a nematic liquid crystal using a lattice Boltzmann algorithm to solve the full three-dimensional equations of hydrodynamics. We present an algorithm for including a moving boundary, to simulate a nanowire, in a lattice Boltzmann simulation. The nematic imposes a torque on a wire that increases linearly with the angle between the wire and the equilibrium direction of the director field. By rotation of these nanowires, one can determine the elastic constants of the nematic.Comment: 10 pages, 8 figure
    • …
    corecore