96 research outputs found

    Selective CO₂ capture in metal-organic frameworks with azine-functionalized pores generated by mechanosynthesis

    Get PDF
    Two new three-dimensional porous Zn(II)-based metal-organic frameworks, containing azine-functionalized pores, have been readily and quickly isolated via mechanosynthesis, by using a nonlinear dicarboxylate and linear N-donor ligands. The use of nonfunctionalized and methyl-functionalized N-donor ligands has led to the formation of frameworks with different topologies and metal-ligand connectivities and therefore different pore sizes and accessible volumes. Despite this, both metal-organic frameworks (MOFs) possess comparable BET surface areas and CO₂ uptakes at 273 and 298 K at 1 bar. The network with narrow and interconnected pores in three dimensions shows greater affinity for CO compared to the network with one-dimensional and relatively large pores-attributable to the more effective interactions with the azine groups

    Imidazol-1-ylethylindazole Voltage-Gated Sodium Channel Ligands Are Neuroprotective during Optic Neuritis in a Mouse Model of Multiple Sclerosis

    Get PDF
    [Image: see text] A series of imidazol-1-ylethylindazole sodium channel ligands were developed and optimized for sodium channel inhibition and in vitro neuroprotective activity. The molecules exhibited displacement of a radiolabeled sodium channel ligand and selectivity for blockade of the inactivated state of cloned neuronal Na(v) channels. Metabolically stable analogue 6 was able to protect retinal ganglion cells during optic neuritis in a mouse model of multiple sclerosis

    Introducing FOPLC based TCSC in coordination with AGC to improve frequency stability of interconnected multi-source power system

    No full text
    Fractional order phase lead-lag controller (FOPLC) is a generalization of classical phase lead-lag controller (CPLC) using fractional calculus. Nowadays, fractional order controllers (FOC) have found wide applications in various aspects of power system control and operation. In this paper, FOPLC are used in structure of flexible ac transmission system (FACTS) based frequency stabilizer to enhance the dynamic performance of automatic generation control (AGC) system. So, Thyristor controlled series capacitor (TCSC) based damping controller with FOPLC structure is proposed in coordination with secondary integral load frequency controller (LFC). The controller is optimized via an improved particle swarm optimization (IPSO) algorithm. The dynamic performance of the proposed controller is compared with CPLC using eigenvalue analysis and time domain simulations. An interconnected multi-source realistic power system with TCSC in series with the tie-line is investigated considering the nonlinearity effects of generation rate constraint (GRC) and governor dead band (GDB). Simulation results reveal that FOPLC based TCSC damping controller achieves superior dynamic performance under various load perturbation patterns in terms of decreased performance index, settling time and amplitude of oscillations. Furthermore, the robustness of the proposed controller has been tested for large uncertainties in system parameter and loading condition

    Demyelination models in the spinal cord

    No full text
    Disruption of axonal conduction within the central nervous system has obvious, negative consequences on numerous functions, including the ability to execute movement successfully. One important cause of axonal conduction deficits is primary demyelination, that is, the loss of the myelin sheaths but sparing of the axons which they surround. Such demyelination leads to conduction deficits ranging from action potential slowing and loss of transmission fidelity, to conduction block, and this latter, most severe consequence is almost inevitably the first consequence of the loss of a whole internode(s) of myelin. Several methods have been developed to induce primary demyelination in the spinal cord and some of the more common of these will be discussed in this chapter. © 2011 Springer Science+Business Media, LLC
    corecore