4,402 research outputs found

    Statistics Anxiety and Self-Efficacy in Psychology Students: A Challenge for Teaching and Learning in STEM

    Get PDF
    Statistics and research methods are embedded in the university curricula for psychology, STEM, and more widely. Statistical skills are also associated with the development of psychological literacy and graduate attributes. Yet there is concern about students’ mathematical and statistical skills in their transition from school to HE. A major challenge facing the teaching and learning of statistics in HE is the high levels of statistics anxiety and low levels of statistics self-efficacy experienced by students required to learn statistics as part of another course, and the negative impact of these factors on academic performance. The purpose of the current research was to identify the levels of statistics anxiety and statistics self-efficacy in UG and PGT psychology students; identify perceived causes of this; and explore any practical interventions that could be introduced in attempt to alleviate anxiety and increase self-efficacy. Both quantitative and qualitative data were collected, using measures of anxiety and self-efficacy in statistics and psychology, and focus group discussions. The results showed that students reported higher levels of anxiety and lower self-efficacy for statistics when compared with anxiety and self-efficacy in psychology. Analysis of the qualitative data suggested various factors that increased statistics anxiety levels, such as assessment, and this anxiety prevented students from revising for exams and attending lectures. Factors identified as potentially reducing statistics anxiety and the feasibility of possible interventions will be discussed in the context of psychology and more widely

    Self-Determination Theory: Increasing Motivation in Middle School Students

    Get PDF
    Self-Determination Theory: Increasing Motivation in Middle School Students Research shows that motivation declines when students enter middle school. Because of this, middle school teachers face the difficult challenge of motivating their students to learn. Although intrinsic motivation results in higher conceptual learning, not all activities in a classroom are intrinsically motivated. Self-Determination Theorists propose that through the process of internalization, students\u27 motivation towards extrinsically motivated activities could reach levels in which the behavioral qualities are comparable to those of intrinsic motivation. The internalization process is dependent on environmental supports for autonomy, competence, relatedness, and task relevance. A handbook based on strategies and concrete examples was developed for middle school teachers to use to maintain intrinsic motivation and promote self-determined behavior in students when engaged in extrinsically motivated activities

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Hyperfine frequency shift in two-dimensional atomic hydrogen

    Full text link
    We propose the explanation of a surprisingly small hyperfine frequency shift in the two-dimensional (2D) atomic hydrogen bound to the surface of superfluid helium below 0.1 K. Owing to the symmetry considerations, the microwave-induced triplet-singlet transitions of atomic pairs in the fully spin-polarized sample are forbidden. The apparent nonzero shift is associated with the density-dependent wall shift of the hyperfine constant and the pressure shift due to the presence of H atoms in the hyperfine state aa not involved in the observed b→cb\to c transition. The interaction of adsorbed atoms with one another effectively decreases the binding energy and, consequently, the wall shift by the amount proportional to their density. The pressure shift of the b→cb\to c resonance comes from the fact that the impurity aa-state atoms interact differently with the initial bb-state and final cc-state atoms and is also linear in density. The net effect of the two contributions, both specific for 2D hydrogen, is comparable with the experimental observation. To our knowledge, this is the first mentioning of the density-dependent wall shift. We also show that the difference between the triplet and singlet scattering lengths of H atoms, at−as=30(5)a_t-a_s=30(5) pm, is exactly twice smaller than the value reported by Ahokas {\it et al.}, Phys. Rev. Lett. {\bf101}, 263003 (2008).Comment: 4 pages, no figure

    Fusing Thermopile Infrared Sensor Data for Single Component Activity Recognition within a Smart Environment

    Get PDF
    To provide accurate activity recognition within a smart environment, visible spectrum cameras can be used as data capture devices in solution applications. Privacy, however, is a significant concern with regards to monitoring in a smart environment, particularly with visible spectrum cameras. Their use, therefore, may not be ideal. The need for accurate activity recognition is still required and so an unobtrusive approach is addressed in this research highlighting the use of a thermopile infrared sensor as the sole means of data collection. Image frames of the monitored scene are acquired from a thermopile infrared sensor that only highlights sources of heat, for example, a person. The recorded frames feature no discernable characteristics of people; hence privacy concerns can successfully be alleviated. To demonstrate how thermopile infrared sensors can be used for this task, an experiment was conducted to capture almost 600 thermal frames of a person performing four single component activities. The person’s position within a room, along with the action being performed, is used to appropriately predict the activity. The results demonstrated that high accuracy levels, 91.47%, for activity recognition can be obtained using only thermopile infrared sensors

    Perceived barriers towards healthy eating and their association with fruit and vegetable consumption

    Get PDF
    Acknowledgements The authors would like to thank the anonymous reviewer, staff at the Health Economics Research Unit and the Rowett Institute of Nutrition and Health for helpful comments on the manuscript. Funding This work was supported by the Scottish Government Rural and Environment Science and Analytical Services (RESAS) division.Peer reviewedPostprin

    Effects of sleep hygiene and artificial bright light interventions on recovery from simulated international air travel

    Full text link
    © 2014, Springer-Verlag Berlin Heidelberg. Purpose: Despite the reported detrimental effects of international air travel on physical performance, a paucity of interventions have been scientifically tested and confirmed to benefit travelling athletes. Consequently, the aim of the present study was to examine the effects of sleep hygiene and artificial bright light interventions on physical performance following simulated international travel. Methods: In a randomized crossover design, 13 physically active males completed 24 h of simulated international travel with (INT) and without (CON) the interventions. The mild hypoxia and cramped conditions typically encountered during commercial air travel were simulated in a normobaric, hypoxic room. Physical performance, subjective jet-lag symptoms and mood states were assessed in the morning and evening on the day prior to and for two days post-travel. Sleep quantity and quality were monitored throughout each trial. Results: Sleep duration was significantly reduced during travel in both trials (P  0.05) performance, were significantly reduced the evening of day 1 and 2 post-travel, with no differences between trials (P > 0.05). Furthermore, vigour was significantly greater (P = 0.04) the morning of day 2 in INT [5.3 (3.9–6.7)] compared to CON [2.8 (1.4–4.2)], and subjective jet-lag symptoms and mood states were significantly worse on day 2 in CON only (P < 0.05). Conclusions: Whilst reducing travel-induced sleep disruption may attenuate travel fatigue, no improvements in the recovery of physical performance were apparent

    Magnetic structure of the swedenborgite compound CaBaMn2 Fe 2 O7 derived by powder neutron diffraction and Mössbauer spectroscopy

    Get PDF
    We present a study combining neutron diffraction and 57 Fe Mössbauer spectroscopy on a powder sample ofCaBaMn 2 Fe 2 O7 belonging to the large family of swedenborgite compounds. The undistorted hexagonal crystal structure (space group P63mc) is preserved down to low temperatures, and all employed techniques reveal a transition into a magnetically long-range ordered phase at TN = 205 K. The magnetic Bragg peak intensities from the powder diffraction patterns together with a symmetry analysis of the employed models unambiguously reveal the classical √3 × √3 magnetic structure on a hexagonal lattice with propagation vector q = ( 1/3 1/3 0). The nuclear Bragg peak intensities allowed the statistical distribution of Fe and Mn ions on both trigonal and kagome sites of the complex swedenborgite structure to be analyzed which was considered to explain the complex shape of the Mössbauer spectra
    • 

    corecore