17 research outputs found

    Determinants of B-Cell Compartment Hyperactivation in European Adolescents Living With Perinatally Acquired HIV-1 After Over 10 Years of Suppressive Therapy

    Get PDF
    Background: Despite a successful antiretroviral therapy (ART), adolescents living with perinatally acquired HIV (PHIV) experience signs of B-cell hyperactivation with expansion of 'namely' atypical B-cell phenotypes, including double negative (CD27-IgD-) and termed age associated (ABCs) B-cells (T-bet+CD11c+), which may result in reduced cell functionality, including loss of vaccine-induced immunological memory and higher risk of developing B-cells associated tumors. In this context, perinatally HIV infected children (PHIV) deserve particular attention, given their life-long exposure to chronic immune activation. Methods: We studied 40 PHIV who started treatment by the 2nd year of life and maintained virological suppression for 13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma (Spike). We applied a multi-disciplinary approach including immunological B and T cell phenotype, plasma proteomics analysis, and serum level of anti-measles antibodies as functional correlates of vaccine-induced immunity. Results: Phenotypic signs of B cell hyperactivation were elevated in subjects starting ART later (%DN T-bet+CD11c+ p=0.03; %AM T-bet+CD11c+ p=0.02) and were associated with detectable cell-associated HIV-1 RNA (%AM T-bet+CD11c+ p=0.0003) and transient elevation of the plasma viral load (spike). Furthermore, B-cell hyperactivation appeared to be present in individuals with higher frequency of exhausted T-cells, in particular: Í4 TIGIT+ were associated with %DN (p=0.008), %DN T-bet+CD11c+ (p=0.0002) and %AM T-bet+CD11c+ (p=0.002) and Í4 PD-1 were associated with %DN (p=0.048), %DN T-bet+CD11c+ (p=0.039) and %AM T-bet+CD11c+ (p=0.006). The proteomic analysis revealed that subjects with expansion of these atypical B-cells and exhausted T-cells had enrichment of proteins involved in immune inflammation and complement activation pathways. Furthermore, we observed that higher levels of ABCs were associated a reduced capacity to maintain vaccine-induced antibody immunity against measles (%B-cells CD19+CD10- T-bet+, p=0.035). Conclusion: We identified that the levels of hyperactivated B cell subsets were strongly affected by time of ART start and associated with clinical, viral, cellular and plasma soluble markers. Furthermore, the expansion of ABCs also had a direct impact on the capacity to develop antibodies response following routine vaccination

    Perinatally Human Immunodeficiency Virus-Infected Adolescents and Young Adults Demonstrate Distinct BNT162b2 Messenger RNA Coronavirus Disease 2019 Vaccine Immunogenicity<SUP> </SUP>

    Get PDF
    BackgroundImmunization of vulnerable populations with distinct immunity often results in suboptimal immunogenicity, durability, and efficacy.MethodsSafety and immunogenicity profiles of BNT162b2 messenger RNA coronavirus disease 2019 (COVID-19) vaccine, among people living with human immunodeficiency virus (HIV), were evaluated in 28 perinatally HIV-infected patients under antiretroviral therapy (ART) and 65 healthy controls (HCs) with no previous history of COVID-19. Thus, we measured severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and CD4+ T cell responses. Samples were collected before vaccination (baseline, day [D] 0), at the second dose (D21), and at 4 weeks (D28) and 6 months (D180) after D0. Proteomic profiles at D0 and D28 were assessed with a multiplexed proximity extension assay (Olink) on plasma samples.ResultsAll HIV-infected patients mounted similar anti-SARS-CoV-2 humoral responses to those of HCs, albeit with lower titers of anti-trimeric S at D28 (P = .01). Only peripheral blood mononuclear cells of HIV-infected patients demonstrated at D28 an impaired ability to expand their specific (CD40L+) CD4+ T-cell populations. Similar humoral titers were maintained between the 2 groups at 6-months follow-up. We additionally correlated baseline protein levels to either humoral or cellular responses, identifying clusters of molecules involved in immune response regulation with inverse profiles between the 2 study groups.ConclusionsResponses of ART-treated HIV-infected patients, compared to those of HCs, were characterized by distinct features especially within the proteomic compartment, supporting their eligibility to an additional dose, similarly to the HC schedule

    Localization of anatomical changes in patients during proton therapy with in-beam PET monitoring: a voxel-based morphometry approach exploiting Monte Carlo simulations

    Get PDF
    Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of&nbsp;treatment. Methods: We selected a patient treated for squamous cell carcinoma (SCC) with proton therapy, to perform multiple Monte Carlo (MC) simulations of the expected PET signal at the start of treatment, and to study how the PET signal may change along the treatment course due to morphological changes. We performed voxel-wise two-tailed statistical tests of the simulated PET images, resembling the voxel-based morphometry (VBM) method commonly used in neuroimaging data analysis, to locate regions with significant morphological changes and to quantify the&nbsp;change. Results: The VBM resembling method has been successfully applied to the simulated in-beam PET images, despite the fact that such images suffer from image artifacts and limited statistics. Three dimensional probability maps were obtained, that allowed to identify interfractional morphological changes and to visualize them superimposed on the computed tomography (CT) scan. In particular, the characteristic color patterns resulting from the two-tailed statistical tests lend themselves to trigger alarms in case of morphological changes along the course of&nbsp;treatment. Conclusions: The statistical method presented in this work is a promising method to apply to PET monitoring data to reveal interfractional morphological changes in patients, occurring over the course of treatment. Based on simulated in-beam PET treatment monitoring images, we showed that with our method it was possible to correctly identify the regions that changed. Moreover we could quantify the changes, and visualize them superimposed on the CT scan. The proposed method can possibly help clinical personnel in the replanning procedure in adaptive proton therapy treatments

    Monitoring Carbon Ion Beams Transverse Position Detecting Charged Secondary Fragments: Results From Patient Treatment Performed at CNAO

    Get PDF
    Particle therapy in which deep seated tumours are treated using 12C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing. The 12C ions beams range could only be monitored by looking at the secondary radiation emitted by the primary beam interaction with the patient tissues and no technical solution capable of the needed precision has been adopted in the clinical centres yet. The detection of charged secondary fragments, mainly protons, emitted by the patient is a promising approach, and is currently being explored in clinical trials at CNAO. Charged particles are easy to detect and can be back-tracked to the emission point with high efficiency in an almost background-free environment. These fragments are the product of projectiles fragmentation, and are hence mainly produced along the beam path inside the patient. This experimental signature can be used to monitor the beam position in the plane orthogonal to its flight direction, providing an online feedback to the beam transverse position monitor chambers used in the clinical centres. This information could be used to cross-check, validate and calibrate, whenever needed, the information provided by the ion chambers already implemented in most clinical centres as beam control detectors. In this paper we study the feasibility of such strategy in the clinical routine, analysing the data collected during the clinical trial performed at the CNAO facility on patients treated using 12C ions and monitored using the Dose Profiler (DP) detector developed within the INSIDE project. On the basis of the data collected monitoring three patients, the technique potential and limitations will be discussed

    Neonatal monocytes demonstrate impaired homeostatic extravasation into a microphysiological human vascular model

    No full text
    Abstract Infections are most frequent at the extremes of life, especially among newborns, reflecting age-specific differences in immunity. Monocytes maintain tissue-homeostasis and defence-readiness by escaping circulation in the absence of inflammation to become tissue-resident antigen presenting cells in vivo. Despite equivalent circulating levels, neonates demonstrate lower presence of monocytes inside peripheral tissues as compared to adults. To study the ability of monocytes to undergo autonomous transendothelial extravasation under biologically accurate circumstances we engineered a three-dimensional human vascular-interstitial model including collagen, fibronectin, primary endothelial cells and autologous untreated plasma. This microphysiological tissue construct enabled age-specific autonomous extravasation of monocytes through a confluent human endothelium in the absence of exogenous chemokines and activation. Both CD16− and CD16+ newborn monocytes demonstrated lower adherence and extravasation as compared to adults. In contrast, pre-activated tissue constructs were colonized by newborn monocytes at the same frequency than adult monocytes, suggesting that neonatal monocytes are capable of colonizing inflamed tissues. The presence of autologous plasma neither improved newborn homeostatic extravasation nor shaped age-specific differences in endothelial cytokines that could account for this impairment. Newborn monocytes demonstrated significantly lower surface expression of CD31 and CD11b, and mechanistic experiments using blocking antibodies confirmed a functional role for CD31 and CD54 in neonatal homeostatic extravasation. Our data suggests that newborn monocytes are intrinsically impaired in extravasation through quiescent endothelia, a phenomenon that could contribute to the divergent immune responsiveness to vaccines and susceptibility to infection observed during early life

    Enhancing the secretion of a glyco-engineered anti-CD20 scFv-Fc antibody in hairy root cultures

    No full text
    Hairy root (HR) cultures represent an attractive platform for the production of heterologous proteins, due to the possibility of secreting the molecule of interest in the culture medium. The main limitation is the low accumulation yields of heterologous proteins. The aim of this study is to enhance the accumulation of a tumor‐targeting antibody with a human‐compatible glycosylation profile in HR culture medium. To this aim, the authors produce Nicotiana benthamiana HR cultures expressing the red fluorescent protein (RFP) to easily screen for different auxins able to induce heterologous protein secretion in the medium. The hormone 2,4‐dichlorophenoxyacetic acid (2,4‐D) is found to induce high accumulation levels (334 mg L−1) of RFP in the culture medium. The same protocol is used to improve the secretion of the tumor‐targeting, CD20‐specific 2B8‐FcΔXF recombinant antibody from glyco‐engineered ΔXTFT N. benthamiana HR cultures. The addition of 2,4‐D determine a 28‐fold increase of the accumulation of fully functional 2B8‐FcΔXF in the culture medium, at levels of ≈16 mg L−1. Antibody N‐glycosylation profiling reveal the prominent occurrence of GnGn structures and low levels of xylose‐ and fucose‐containing counterparts. This result is the first example of the expression of an engineered anti‐CD20 antibody with a scFv‐Fc format at high levels in HR

    Immune Activation, Inflammation, and Non-AIDS Co-Morbidities in HIV-Infected Patients under Long-Term ART

    Get PDF
    Despite effective antiretroviral therapy (ART), people living with HIV (PLWH) still present persistent chronic immune activation and inflammation. This condition is the result of several factors including thymic dysfunction, persistent antigen stimulation due to low residual viremia, microbial translocation and dysbiosis, caused by the disruption of the gut mucosa, co-infections, and cumulative ART toxicity. All of these factors can create a vicious cycle that does not allow the full control of immune activation and inflammation, leading to an increased risk of developing non-AIDS co-morbidities such as metabolic syndrome and cardiovascular diseases. This review aims to provide an overview of the most recent data about HIV-associated inflammation and chronic immune exhaustion in PLWH under effective ART. Furthermore, we discuss new therapy approaches that are currently being tested to reduce the risk of developing inflammation, ART toxicity, and non-AIDS co-morbidities

    Humoral and cellular response following vaccination with the BNT162b2 mRNA COVID-19 vaccine in patients affected by primary immunodeficiencies

    Get PDF
    Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells
    corecore