12 research outputs found

    The dynamic architecture of the metabolic switch in Streptomyces coelicolor

    Get PDF
    Background: During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. Results: Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. Conclusions: Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting

    Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth.

    No full text
    The proliferative and functional heterogeneity among seemingly uniform cells is a universal phenomenon. Identifying the underlying factors requires single-cell analysis of function and proliferation. Here we show that the pancreatic beta-cells in zebrafish exhibit different growth-promoting and functional properties, which in part reflect differences in the time elapsed since birth of the cells. Calcium imaging shows that the beta-cells in the embryonic islet become functional during early zebrafish development. At later stages, younger beta-cells join the islet following differentiation from post-embryonic progenitors. Notably, the older and younger beta-cells occupy different regions within the islet, which generates topological asymmetries in glucose responsiveness and proliferation. Specifically, the older beta-cells exhibit robust glucose responsiveness, whereas younger beta-cells are more proliferative but less functional. As the islet approaches its mature state, heterogeneity diminishes and beta-cells synchronize function and proliferation. Our work illustrates a dynamic model of heterogeneity based on evolving proliferative and functional beta-cell states

    Vitamina E no desempenho, características de carcaça e qualidade do presunto cozido de suínos Vitamin E on performance, carcass characteristics and quality of pig's cooked ham

    No full text
    O objetivo deste trabalho foi avaliar o efeito da vitamina E sobre o desempenho, caracterĂ­sticas de carcaça e qualidade do presunto. Noventa e seis suĂ­nos foram submetidos aos seguintes tratamentos: controle, 100, 200 e 400 mg de vitamina E por kg de ração, fornecidas a partir de 116 dias antes do abate. ApĂłs o abate, as carcaças foram avaliadas, resfriadas, desossadas e o pernil foi removido para fabricação de presunto cozido. AnĂĄlises dos teores de vitamina E e ĂĄcido tiobarbitĂșrico (TBARS) foram realizadas em amostras de pernil e de presunto. A mĂ©dia do ganho de peso foi 789,81 g por dia, do consumo 2.418 g por dia e da conversĂŁo alimentar 3,06. Os animais apresentaram 113,57 kg de peso vivo; 85,90 kg de peso de carcaça; 75,62% de rendimento de carcaça; 61,28 mm de profundidade de lombo; 23,16 mm de espessura de toucinho e 49,28% de carne magra. Amostras de presunto com suplementação de vitamina E apresentaram de 0,61 a 1,19 mg kg-1 de TBARS, contra 1,77 a 3,91 mg kg-1 de TBARS do controle. Dietas com 200 mg vitamina E por kg de ração reduziram os nĂ­veis de oxidação em 70% no presunto cozido e diminuĂ­ram a espessura de toucinho.<br>The objective of this work was to evaluate the effect of vitamin E on performance, carcass characteristics and cooked ham quality. Ninety-six pigs were submitted to the following treatments: control; 100, 200 and 400 mg of vitamin E per kg of diet; during 116 days before slaughter. After slaughter, pig carcasses were measured, chilled, deboned and ham sections were removed to produce the cooked ham. Samples of frozen and cooked ham were analysed in relation to vitamin E and thiobarbituric acid (TBARS) contents. Growth rate mean was 789.81 g per day, feed intake mean was 2,418 g per day and feed:gain ratio was 3.06. The carcass showed the following mean: 113.57 kg alive weight; 85.90 kg carcass weight; 75.62% carcass yield; 61.28 mm ham depth; 23.16 mm backfat thickness and 49.28% lean meat. The cooked ham samples with the best levels of vitamin E showed 0.61 to 1.19 mg kg-1 TBARS, against 1.77 to 3.91 mg kg-1 TBARS for the control. Levels of supplementation of 200 mg vitamin E per kg of diet reduce the oxidation levels up to 70% in cooked ham and decrease backfat thickness

    Coastal habitat use and residency of juvenile Atlantic sharpnose sharks (Rhizoprionodon terraenovae)

    No full text
    Coastal habitat use and residency of a coastal bay by juvenile Atlantic sharpnose sharks, Rhizoprionodon terraenovae, were examined by acoustic monitoring, gillnet sampling, and conventional tag–recapture. Acoustic monitoring data were used to define the residency and movement patterns of sharks within Crooked Island Sound, Florida. Over 3 years, sharks were monitored for periods of 1–37 days, with individuals regularly moving in and out of the study site. Individual sharks were continuously present within the study site for periods of 1–35 days. Patterns of movement could not be correlated with time of day. Home range sizes were typically small (average = 1.29 km2) and did not vary on a yearly basis. Gillnet sampling revealed that juvenile Atlantic sharpnose sharks were present in all habitat types found within Crooked Island Sound, and peaks in abundance varied depending on month within a year. Although telemetry data showed that most individuals remained within the study site for short periods of time before emigrating, conventional tag–recapture data indicates some individuals return to Crooked Island Sound after extended absences (maximum length = 1,352 days). Although conventional shark nursery theory suggests small sharks remain in shallow coastal waters to avoid predation, juvenile Atlantic sharpnose sharks frequently exited from protected areas and appear to move through deeper waters to adjacent coastal bays and estuaries. Given the high productivity exhibited by this species, the benefit gained through a nursery that reduces predation may be limited for this species
    corecore