28,364 research outputs found
Effect of environment on thermal control coatings Final report
Thermal control coating degradation under vacuum and ultraviolet radiation by chemical change of photoproduced holes and electron
On Krein-like theorems for noncanonical Hamiltonian systems with continuous spectra: application to Vlasov-Poisson
The notions of spectral stability and the spectrum for the Vlasov-Poisson
system linearized about homogeneous equilibria, f_0(v), are reviewed.
Structural stability is reviewed and applied to perturbations of the linearized
Vlasov operator through perturbations of f_0. We prove that for each f_0 there
is an arbitrarily small delta f_0' in W^{1,1}(R) such that f_0+delta f_0f_0$ is perturbed by an area preserving rearrangement, f_0 will
always be stable if the continuous spectrum is only of positive signature,
where the signature of the continuous spectrum is defined as in previous work.
If there is a signature change, then there is a rearrangement of f_0 that is
unstable and arbitrarily close to f_0 with f_0' in W^{1,1}. This result is
analogous to Krein's theorem for the continuous spectrum. We prove that if a
discrete mode embedded in the continuous spectrum is surrounded by the opposite
signature there is an infinitesimal perturbation in C^n norm that makes f_0
unstable. If f_0 is stable we prove that the signature of every discrete mode
is the opposite of the continuum surrounding it.Comment: Submitted to the journal Transport Theory and Statistical Physics. 36
pages, 12 figure
Recommended from our members
Investigating the Intelligibility of a Computer Vision System for Blind Users
Computer vision systems to help blind usersare becoming increasingly common yet often these systems are not intelligible. Our work investigates the intelligibility of a wearable computer vision system to help blind users locate and identify people in their vicinity. Providing a continuous stream of information, this system allows us to explore intelligibility through interaction and instructions, going beyond studies of intelligibility that focus on explaining a decision a computer vision system might make. In a study with 13 blind users, we explored whether varying instructions (either basic or enhanced) about how the system worked would change blind users’ experience of the system. We found offering a more detailed set of instructions did not affect how successful users were using the system nor their perceived workload. We did, however, find evidence of significant differences in what they knew about the system, and they employed different, and potentially more effective, use strategies. Our findings have important implications for researchers and designers of computer vision systemsfor blind users, as well more general implications for understanding what it means to make interactive computer vision systems intelligible
Bringing remote sensing technology to the user community
The procedures and services available for educating and training potential users of remote sensing technology are discussed along with approaches for achieving an in-house capability for the analysis of remotely sensed data using numerical techniques based on pattern recognition principles. Cost estimates are provided where appropriate
Passivation of pigment particles for thermal control coatings
The preparation of a matrix of 48 samples consisting of pigments and pigmented paints is described. The results obtained from testing these samples by electron spin resonance and by in situ spectral reflectance measurements in space simulation tests are presented. Conclusions and recommendations for further research are given
Mesons and Flavor on the Conifold
We explore the addition of fundamental matter to the Klebanov-Witten field
theory. We add probe D7-branes to the theory obtained from placing
D3-branes at the tip of the conifold and compute the meson spectrum for the
scalar mesons. In the UV limit of massless quarks we find the exact dimensions
of the associated operators, which exhibit a simple scaling in the large-charge
limit. For the case of massive quarks we compute the spectrum of scalar mesons
numerically.Comment: 19 pages, 3 figures, v2: typos fixe
Making postgraduate students and supervisors aware of the role of emotions in the PhD process
Emotions are an integral part of the PhD process. A range of emotions are common and to be expected. How do emotions affect the PhD process for both postgraduate students and their supervisors? How can we make our emotions work positively for us in the PhD process? To explore answers to these questions, three lecturers currently supervising postgraduates and three postgraduates at various stages in their doctoral studies collectively pooled their experiences. We developed an interactive workshop that was recently conducted for postgraduate students at Murdoch University and at the Australian Association for Social Research annual conference 2002.
This presentation will explore the role that emotions play in the PhD process and how supervisors and postgraduates alike can benefit from reflecting on this issue. A number of practical (and humorous) tips will be provided as well as examples from others' PhD experiences. The role of emotions at the beginning, middle and end of a PhD program will be explored. The data collection and analysis phases are a time when emotions may run riot. Trepidation is especially common when fieldwork or data collection is involved, as is anger when postgraduate's views about how the world works are challenged and then sadness (and relief!) when the data collection phase is finished. We will discuss how supervisors can assist their postgraduates to make these feelings work for them. The presentation will also explore the emotions that arise from the supervisor-postgraduate partnership
Recommended from our members
A Bayesian approach for statistical–physical bulk parameterization of rain microphysics. Part II: Idealized Markov chain Monte Carlo experiments
Observationally informed development of a new framework for bulk rain microphysics, the Bayesian Observationally Constrained Statistical–Physical Scheme (BOSS; described in Part I of this study), is demonstrated. This scheme’s development is motivated by large uncertainties in cloud and weather simulations associated with approximations and assumptions in existing microphysics schemes. Here, a proof-of-concept study is presented using a Markov chain Monte Carlo sampling algorithm with BOSS to probabilistically estimate microphysical process rates and parameters directly from a set of synthetically generated rain observations. The framework utilized is an idealized steady-state one-dimensional column rainshaft model with specified column-top rain properties and a fixed thermodynamical profile. Different configurations of BOSS—flexibility being a key feature of this approach—are constrained via synthetic observations generated from a traditional three-moment bulk microphysics scheme. The ability to retrieve correct parameter values when the true parameter values are known is illustrated. For cases when there is no set of true parameter values, the accuracy of configurations of BOSS that have different levels of complexity is compared. It is found that addition of the sixth moment as a prognostic variable improves prediction of the third moment (proportional to bulk rain mass) and rain rate. In contrast, increasing process rate formulation complexity by adding more power terms has little benefit—a result that is explained using further-idealized experiments. BOSS rainshaft simulations are shown to well estimate the true process rates from constraint by bulk rain observations, with the additional benefit of rigorously quantified uncertainty of these estimates
- …