3,570 research outputs found

    The multidisciplinary management of type 2 and gestational diabetes in pregnancy

    Get PDF
    The UK is experiencing a dramatic increase in the prevalence of type 2 diabetes mellitus (T2D). Consequently, there is a corresponding increase in diabetes in pregnancy, with 87.5% of pregnancies in the UK complicated by diabetes due to gestational diabetes mellitus (GDM), and 27% of those with pre-existing diabetes having T2D (National Centre for Health and Clinical Excellence (NICE), 2008a). Although the risks to mother and baby are similar to type 1 diabetes (T1D), the approach and management often differ. Women with GDM and T2D are more likely to be older, multiparous and live in deprived areas. Certain ethnic groups are more prone to GDM and T2D, and there is a strong association between being overweight or obese and diabetes. Women who develop GDM in pregnancy also have an increased risk of T2D in later life (Diabetes UK, 2011a). Some surveys, such as the Confidential Enquiry into Maternal and Child Health (CEMACH, 2007a) have shown that women with T2D often receive suboptimum care prior to conception and in early pregnancy. This paper presents an overview of the multidisciplinary management of T2D and GDM in pregnancy and identifies areas where care may be lacking for these women

    A Period of Controlled Elevation of IOP (CEI) Produces the Specific Gene Expression Responses and Focal Injury Pattern of Experimental Rat Glaucoma

    Get PDF
    PURPOSE: We determine if several hours of controlled elevation of IOP (CEI) will produce the optic nerve head (ONH) gene expression changes and optic nerve (ON) damage pattern associated with early experimental glaucoma in rats. METHODS: The anterior chambers of anesthetized rats were cannulated and connected to a reservoir to elevate IOP. Physiologic parameters were monitored. Following CEI at various recovery times, ON cross-sections were graded for axonal injury. Anterior ONHs were collected at 0 hours to 10 days following CEI and RNA extracted for quantitative PCR measurement of selected messages. The functional impact of CEI was assessed by electroretinography (ERG). RESULTS: During CEI, mean arterial pressure (99 ± 6 mm Hg) and other physiologic parameters remained stable. An 8-hour CEI at 60 mm Hg produced significant focal axonal degeneration 10 days after exposure, with superior lesions in 83% of ON. Message analysis in CEI ONH demonstrated expression responses previously identified in minimally injured ONH following chronic IOP elevation, as well as their sequential patterns. Anesthesia with cannulation at 20 mm Hg did not alter these message levels. Electroretinographic A- and B-waves, following a significant reduction at 2 days after CEI, were fully recovered at 2 weeks, while peak scotopic threshold response (pSTR) remained mildly but significantly depressed. CONCLUSIONS: A single CEI reproduces ONH message changes and patterns of ON injury previously observed with chronic IOP elevation. Controlled elevation of IOP can allow detailed determination of ONH cellular and functional responses to an injurious IOP insult and provide a platform for developing future therapeutic interventions

    Relationship between the magnitude of intraocular pressure during an episode of acute elevation and retinal damage four weeks later in rats

    Get PDF
    PURPOSE: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats. METHODS: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10-100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (-6.04 to 2.72 log cd.s.m(-2)). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m(-2)) after 15 min of light adaptation (150 cd/m(2)). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology. RESULTS: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density. CONCLUSIONS: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a 'threshold' for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more

    Rational F-Theory GUTs without exotics

    Full text link
    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.Comment: 27 Pages, 1 Figur

    Presymptomatic risk assessment for chronic non-communicable diseases

    Get PDF
    The prevalence of common chronic non-communicable diseases (CNCDs) far overshadows the prevalence of both monogenic and infectious diseases combined. All CNCDs, also called complex genetic diseases, have a heritable genetic component that can be used for pre-symptomatic risk assessment. Common single nucleotide polymorphisms (SNPs) that tag risk haplotypes across the genome currently account for a non-trivial portion of the germ-line genetic risk and we will likely continue to identify the remaining missing heritability in the form of rare variants, copy number variants and epigenetic modifications. Here, we describe a novel measure for calculating the lifetime risk of a disease, called the genetic composite index (GCI), and demonstrate its predictive value as a clinical classifier. The GCI only considers summary statistics of the effects of genetic variation and hence does not require the results of large-scale studies simultaneously assessing multiple risk factors. Combining GCI scores with environmental risk information provides an additional tool for clinical decision-making. The GCI can be populated with heritable risk information of any type, and thus represents a framework for CNCD pre-symptomatic risk assessment that can be populated as additional risk information is identified through next-generation technologies.Comment: Plos ONE paper. Previous version was withdrawn to be updated by the journal's pdf versio

    Exoplanet Terra Incognita

    Full text link
    Exoplanet surface imaging, cartography and the search for exolife are the next frontiers of planetology and astrophysics. Here we present an over-view of ideas and techniques to resolve albedo features on exoplanetary surfaces. Albedo maps obtained in various spectral bands (similar to true-colour images) may reveal exoplanet terrains, geological history, life colonies, and even artificial structures of advanced civilizations.Comment: 16 pages, 6 figures, Planetary Cartograph

    Individual variation in levels of haptoglobin-related protein in children from Gabon

    Get PDF
    Background: Haptoglobin related protein (Hpr) is a key component of trypanosome lytic factors (TLF), a subset of highdensity lipoproteins (HDL) that form the first line of human defence against African trypanosomes. Hpr, like haptoglobin (Hp) can bind to hemoglobin (Hb) and it is the Hpr-Hb complexes which bind to these parasites allowing uptake of TLF. This unique form of innate immunity is primate-specific. To date, there have been no population studies of plasma levels of Hpr, particularly in relation to hemolysis and a high prevalence of ahaptoglobinemia as found in malaria endemic areas. Methods and Principal Findings: We developed a specific enzyme-linked immunosorbent assay to measure levels of plasma Hpr in Gabonese children sampled during a period of seasonal malaria transmission when acute phase responses (APR), malaria infection and associated hemolysis were prevalent. Median Hpr concentration was 0.28 mg/ml (range 0.03-1.1). This was 5-fold higher than that found in Caucasian children (0.049 mg/ml, range 0.002-0.26) with no evidence of an APR. A general linear model was used to investigate associations between Hpr levels, host polymorphisms, parasitological factors and the acute phase proteins, Hp, C-reactive protein (CRP) and albumin. Levels of Hpr were associated with Hp genotype, decreased with age and were higher in females. Hpr concentration was strongly correlated with that of Hp, but not CRP

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late
    corecore