15,627 research outputs found
Aquatic Invertebrate Community Structure, Biological Condition, Habitat, and Water Quality at Ozark National Scenic Riverways, Missouri, 2005-2014
Ozark National Scenic Riverways (OZAR) was established to protect the corridor of the Current River and its major tributary, the Jacks Fork. The Current River is one of the few remaining free-flowing rivers in the U.S., with much of its base flow coming from several large springs. To assess the biological condition of these rivers, aquatic invertebrate community structure was monitored from 2005 to 2014. Benthic invertebrate samples and associated habitat and water quality data were collected from each of nine sampling sites using a Slack-Surber sampler. The Stream Condition Index (SCI), a multimetric index that incorporates taxa richness, EPT (Ephemeroptera, Plecoptera, Trichoptera) richness, Shannon’s diversity index, and Hilsenhoff Biotic Index (HBI), was calculated. The benthic invertebrate fauna was diverse with 155 distinct taxa identified from all sites. Mean taxa richness was high, ranging from 22 to 30 among sites. The invertebrate taxa of the Current River and Jacks Fork are largely intolerant across all taxa represented (mean tolerance value= ~4.25). Mean HBI did not exceed 3.9 in the Current River or 4.4 for the Jacks Fork. Mean SCI scores across sampling sites generally were well above 16, indicating they are not impaired. Habitat and water quality data were summarized, but they were poorly correlated with individual invertebrate metrics. Sørenson’s similarity index was used to assess community similarity among sites, and similarity scores were then analyzed using ascendant hierarchical cluster analysis. Similarity among sites was 72% or greater. Cluster analysis showed that Current River and Jacks Fork sites clustered separately and in a downstream progression. The uppermost collection site on the Current River was most unlike the other sites, which probably relates to the distinct physical features of that site compared to the others. Nonmetric Multidimensional Scaling (NMDS) was used to evaluate the relationship of invertebrate metrics to habitat and water quality. The NMDS model was found to be a good fit (stress=0.04) and specific conductance, temperature, discharge, filamentous algae and aquatic vegetation were among the most important habitat variables in defining the relationship among sampling sites. The three lower Current River and Jacks Fork sites each were closely grouped in ordination space, but the three upper Current River sites were farther apart from each other. The influence of several large volume springs near those sites is suspected of producing such disparity through press type disturbances. Although the invertebrate communities and water quality in the Current River and Jacks Fork are largely sound and have high biological condition, ongoing and projected threats to these resources remain, and those threats largely originate outside park jurisdictional boundaries. Inherent variability of invertebrate community diversity across sites and years highlights the importance of using multi-metric assessments and multiyear monitoring to support management decisions
Summary of the electromagnetic compatibility evaluation of the proposed satellite power system
The effects of the proposed solar power satellite (SPS) operations on electronic equipment and systems by fundamental, harmonic, and intermodulation component emissions from the orbital station; and the fundamental, harmonic, and structural intermodulation emissions from the rectenna site were evaluated. The coupling and affects interactions affecting a wide spectrum of electronic equipment are considered. The primary EMC tasking areas are each discussed separately
The Petrogenetic significance of Plagioclase megacrysts in Archean rocks
The petrogenetic significance of plagioclase megacryst-bearing Archean rocks was considered. It was suggested that these developed in mid-to upper-crustal magma chambers that were repeatedly replenished. Crystallization of megacrysts from a primitive liquid that evolves to an Fe-rich tholeiite (with LREE enrichment) is nearly isothermal and is an equilibrium process. Cumulates probably form near the margins of the chambers and liquids with megacrysts are periodically extracted and can appear as volcanics. Some flows and intrusives are found in arc-like settings in greenstone belts. Megacrystic dikes represent large volumes of melt and dike swarms such as the Metachawan swarm of Ontario suggest multiple sources of similar compositions. A complex series of melt ponding and migration are probable and involve large amounts of liquid
Tectonic implications of Archean anorthosite occurrences
The occurrences of megacrystic anorthosite and basalt in a variety of geologic settings were reviewed and it was found that these rock types occur in a variety of tectonic settings. Anorthosites and megacrystic basalts are petrogenetically related and are found in oceanic volcanic crust, cratons, and shelf environments. Although megacrystic basalts are most common in Archean terranes, similar occurrences are observed in rocks of early Proterozoic age, and even in young terranes such as the Galapagos hotspot. Based on inferences from experimental petrology, all of the occurrences are apparently associated with similar parental melts that are relatively Fe-rich tholeiites. The megacrystic rocks exhibit a two- (or more)-stage development of plagioclase, with the megacrysts having relatively uniform composition produced under nearly isothermal and isochemical conditions over substantial periods of time. The anorthosites appear to have intruded various crustal levels from very deep to very shallow. The petrogenetic indicators, however, suggest that conditions of formation of the Precambrian examples were different from Phanerozoic occurrences
Flight evaluation of two-segment approaches using area navigation guidance equipment
A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult
Operational flight evaluation of the two-segment approach for use in airline service
United Airlines has developed and evaluated a two-segment noise abatement approach procedure for use on Boeing 727 aircraft in air carrier service. In a flight simulator, the two-segment approach was studied in detail and a profile and procedures were developed. Equipment adaptable to contemporary avionics and navigation systems was designed and manufactured by Collins Radio Company and was installed and evaluated in B-727-200 aircraft. The equipment, profile, and procedures were evaluated out of revenue service by pilots representing government agencies, airlines, airframe manufacturers, and professional pilot associations. A system was then placed into scheduled airline service for six months during which 555 two-segment approaches were flown at three airports by 55 airline pilots. The system was determined to be safe, easy to fly, and compatible with the airline operational environment
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
Foot Characteristics in Association With Inversion Ankle Injury
Objective: To review the literature that provides information to assist in analyzing the role of the foot in acute and chronic lateral ankle injury. Data Sources: We searched MEDLINE, CINAHL, Institute for Scientific Information's Web of Science, and SPORT Discus from 1965–2005 using the terms lateral, ankle, ligament, injury, risk factors, foot, subtalar joint, talocrural joint, gait analysis, and foot biomechanics. Data Synthesis: We found substantial information on the incidence and treatment of lateral ankle sprains in sport but very few articles that focused on risk factors associated with these injuries and even less information on the foot as it relates to this condition. Moreover, little information was available regarding the risk factors associated with the development of chronic instability after a lateral ankle sprain. We critically analyzed the foot articulations and the foot's role in the mechanism of injury to assist our clinical synopsis. Conclusions/Recommendations: An in-depth review of the foot complex in relation to lateral ankle sprains strongly suggested its importance when treating and preventing inversion ankle trauma. Throughout the literature, the only static foot measurements that show a significant correlation to this condition are an identified cavovarus deformity, increased foot width, and increased calcaneal eversion range of motion. Authors also provided dynamic measurements of the foot, which produced several significant findings that we discuss. Although our findings offer some insight into the relationship between foot characteristics and lateral ankle injuries, future research is needed to confirm the results of this review and expand this area of investigation
- …