2,976 research outputs found

    We Would Ride Safely in the Harbor of the Future : Historical Parallels Between the Existential Threats of Yellow Fever and Sea Level Rise in New Orleans and Norfolk

    Get PDF
    The 19th century experiences of Yellow Fever epidemics in New Orleans and Norfolk present historical parallels for how those cities, and others, are experiencing existential threats from climate change and sea level rise in the 21st century. In particular, the 19th century ?Sanitary Reform? movement can be interpreted as a model for challenges facing 21st century ?Climate Resilience? initiatives, including denialism and political obfuscation of scientific debates as well as tensions between short-term profit and the cost of long-term infrastructure investments and between individualism and communitarianism. The history of Sanitary Reform suggests that, at least in the U.S., Climate Resilience initiatives will advance largely on a regional basis through extended local debates around these and other challenges until resilient infrastructure and practices are taken for granted much as sanitary waterworks and sewers are today. The 19th century experiences of Yellow Fever epidemics in New Orleans and Norfolk present historical parallels for how those cities, and others, are experiencing existential threats from climate change and sea level rise in the 21st century. In particular, the 19th century Sanitary Reform movement can be interpreted as a model for challenges facing 21st century Climate Resilience initiatives, including denialism and political obfuscation of scientific debates as well as tensions between short-term profit and the cost of long-term infrastructure investments and between individualism and communitarianism. The history of Sanitary Reform suggests that, at least in the U.S., Climate Resilience initiatives will advance largely on a regional basis through extended local debates around these and other challenges until resilient infrastructure and practices are taken for granted much as sanitary waterworks and sewers are today

    The influence of charge on the multiple thermal transitions observed in xanthan

    Get PDF
    Helix-coil transitions in xanthans occur at lower temperatures when the pyruvate group is charged, destabilising the polymer chains. Increasing salt content increases the transition temperature by reducing the effective charge on the pyruvate. A simple equivalent mass action model predicts how transition temperatures change as a function of salt concentration. The functional form of the change in transition temperature (1/T) versus natural log (salt concentration) is approximately linear and similar to more traditional polyelectrolyte theories. Transition temperatures in xanthans containing nominally homogeneous pyruvate contents show biphasic transitions, this is because the phases contain different pyruvate levels, however the transitions approach one another in temperature and eventually merge as salt content is increased. It is proposed that pyruvate groups, despite being present at a lower concentration relative to glucuronic acid, dominate the charge interactions due to their location on the outside of the helices

    Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    Get PDF
    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux

    Single electron Sensitive Readout (SiSeRO) X-ray detectors: Technological progress and characterization

    Full text link
    Single electron Sensitive Read Out (SiSeRO) is a novel on-chip charge detector output stage for charge-coupled device (CCD) image sensors. Developed at MIT Lincoln Laboratory, this technology uses a p-MOSFET transistor with a depleted internal gate beneath the transistor channel. The transistor source-drain current is modulated by the transfer of charge into the internal gate. At Stanford, we have developed a readout module based on the drain current of the on-chip transistor to characterize the device. Characterization was performed for a number of prototype sensors with different device architectures, e.g. location of the internal gate, MOSFET polysilicon gate structure, and location of the trough in the internal gate with respect to the source and drain of the MOSFET (the trough is introduced to confine the charge in the internal gate). Using a buried-channel SiSeRO, we have achieved a charge/current conversion gain of >700 pA per electron, an equivalent noise charge (ENC) of around 6 electrons root mean square (RMS), and a full width half maximum (FWHM) of approximately 140 eV at 5.9 keV at a readout speed of 625 Kpixel/s. In this paper, we discuss the SiSeRO working principle, the readout module developed at Stanford, and the characterization test results of the SiSeRO prototypes. We also discuss the potential to implement Repetitive Non-Destructive Readout (RNDR) with these devices and the preliminary results which can in principle yield sub-electron ENC performance. Additional measurements and detailed device simulations will be essential to mature the SiSeRO technology. However, this new device class presents an exciting technology for next generation astronomical X-ray telescopes requiring fast, low-noise, radiation hard megapixel imagers with moderate spectroscopic resolution.Comment: To appear in SPIE Proceedings of Astronomical Telescopes + Instrumentation, 202

    Foregut microbiome in development of esophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA

    Discovery of 10 pulsars in an Arecibo drift-scan survey

    Full text link
    We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 square degrees of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass (>0.2 Msun) companion. The long orbital period and small eccentricity (e = 0.0009) make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607 which imply that its absolute visual magnitude is > 12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection imples a cooling age of least 1 Gyr.Comment: 8 pages, 3 figures, accepted for publication in MNRA

    The high-speed X-ray camera on AXIS

    Full text link
    AXIS is a Probe-class mission concept that will provide high-throughput, high-spatial-resolution X-ray spectral imaging, enabling transformative studies of high-energy astrophysical phenomena. To take advantage of the advanced optics and avoid photon pile-up, the AXIS focal plane requires detectors with readout rates at least 20 times faster than previous soft X-ray imaging spectrometers flying aboard missions such as Chandra and Suzaku, while retaining the low noise, excellent spectral performance, and low power requirements of those instruments. We present the design of the AXIS high-speed X-ray camera, which baselines large-format MIT Lincoln Laboratory CCDs employing low-noise pJFET output amplifiers and a single-layer polysilicon gate structure that allows fast, low-power clocking. These detectors are combined with an integrated high-speed, low-noise ASIC readout chip from Stanford University that provides better performance than conventional discrete solutions at a fraction of their power consumption and footprint. Our complementary front-end electronics concept employs state of the art digital video waveform capture and advanced signal processing to deliver low noise at high speed. We review the current performance of this technology, highlighting recent improvements on prototype devices that achieve excellent noise characteristics at the required readout rate. We present measurements of the CCD spectral response across the AXIS energy band, augmenting lab measurements with detector simulations that help us understand sources of charge loss and evaluate the quality of the CCD backside passivation technique. We show that our technology is on a path that will meet our requirements and enable AXIS to achieve world-class science.Comment: 17 pages, 11 figures, submitted to Proceedings of SPIE Optics + Photonics 202
    corecore