1,117 research outputs found

    Influence of Ethylene on Indole-3-acetic Acid Concentration in Etiolated Pea Epicotyl Tissue

    Full text link

    Speech Analysis

    Get PDF
    Contains research objectives and reports on one research project.National Science Foundatio

    Ethylene-forming Systems in Etiolated Pea Seedling and Apple Tissue

    Full text link

    Influence of Calcium and Magnesium on Ethylene Production by Apple Tissue Slices

    Full text link

    Effect of a major ice storm on understory light conditions in an old-growth Acer-Fagus forest: Pattern of recovery over seven years

    Get PDF
    We evaluated the effects of a major ice storm on understory light conditions (%PPFD, photosynthetic photon flux density) in an old-growth Acer-Fagus forest in Quebec, based on pre- and post-disturbance light measurements taken until the seventh growing season after the event (which occurred in January 1998). Before the ice storm, most microsites received between 2 and 4%PPFD. Following the ice storm, the stand-level mean %PPFD increased four- to five-fold, ranging from 13.8 to 20.5%PPFD, from 0.3 to 4 m aboveground. Despite its magnitude, the post-ice storm increase in light transmission was short-lived. By 1999 (2-year+), the mean light levels had decreased by half, and recovery to pre-storm conditions occurred within 3-7 years, depending on height. The decrease in light transmission during the post-disturbance years followed an inverse J-shape trend, indicating more dynamic changes early after disturbance. By 2004 (7-year+), light levels at ≤2 m had become slightly but significantly lower than before the ice storm, with most microsites receiving <2%PPFD. The ice storm led to a synchronized increase of the light levels at almost all understory locations, which might allow a high proportion of the advanced regeneration to experience a release. However, due to the rapid recovery of the light conditions to levels similar or lower than before the ice storm, this disturbance should be more advantageous to shade-tolerant species

    miR-196b target screen reveals mechanisms maintaining leukemia stemness with therapeutic potential.

    Get PDF
    We have shown that antagomiR inhibition of miRNA miR-21 and miR-196b activity is sufficient to ablate MLL-AF9 leukemia stem cells (LSC) in vivo. Here, we used an shRNA screening approach to mimic miRNA activity on experimentally verified miR-196b targets to identify functionally important and therapeutically relevant pathways downstream of oncogenic miRNA in MLL-r AML. We found Cdkn1b (p27Kip1) is a direct miR-196b target whose repression enhanced an embryonic stem cell–like signature associated with decreased leukemia latency and increased numbers of leukemia stem cells in vivo. Conversely, elevation of p27Kip1 significantly reduced MLL-r leukemia self-renewal, promoted monocytic differentiation of leukemic blasts, and induced cell death. Antagonism of miR-196b activity or pharmacologic inhibition of the Cks1-Skp2–containing SCF E3-ubiquitin ligase complex increased p27Kip1 and inhibited human AML growth. This work illustrates that understanding oncogenic miRNA target pathways can identify actionable targets in leukemia

    Ethylene Production by Apple Protoplasts

    Full text link
    • …
    corecore