30,575 research outputs found

    Diminiode thermionic conversion with 111-iridium electrodes

    Get PDF
    Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA

    Creep-rupture of polymer-matrix composites

    Get PDF
    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level

    Telerobotic hand controller study of force reflection with position control mode

    Get PDF
    To gain further information about the effectiveness of kinesthetic force feedback or force reflection in position control mode for a telerobot, two Space Station related tasks were performed by eight subjects with and without the use of force reflection. Both time and subjective responses were measured. No differences due to force were found, however, other differences were found, e.g., gender. Comparisons of these results with other studies are discussed

    The accelerated characterization of viscoelastic composite materials

    Get PDF
    Necessary fundamentals relative to composite materials and viscoelasticity are reviewed. The accelerated characterization techniques of time temperature superposition and time temperature stress superposition are described. An experimental procedure for applying the latter to composites is given along with results obtained on a particular T300/934 graphite/epoxy. The accelerated characterization predictions are found in good agreement with actual long term tests. A postcuring phenomenon is discussed that necessitates thermal conditioning of the specimen prior to testing. A closely related phenomenon of physical aging is described as well as the effect of each on the glass transition temperature and strength. Creep rupture results are provided for a variety of geometries and temperatures for T300/934 graphite/epoxy. The results are found to compare reasonably with a modified kinetic rate theory

    Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    Get PDF
    Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given

    The viscoelastic behavior of a composite in a thermal environment

    Get PDF
    A proposed method for the accelerated predictions of modulus and life times for time dependent polymer matrix composite laminates is presented. The method, based on the time temperature superposition principle and lamination theory, is described in detail. Unidirectional reciprocal of compliance master curves and the shift functions needed are presented and discussed. Master curves for arbitrarily oriented unidirectional laminates are predicted and compared with experimantal results obtained from master curves generated from 15 minute tests and with 25 hour tests. Good agreement is shown. Predicted 30 deg and 60 deg unidirectional strength master curves are presented and compared to results of creep rupture tests. Reasonable agreement is demonstrated. In addition, creep rupture results for a (90 deg + or - 60 deg/90 deg) sub 2s laminate are presented

    Traversable Wormholes in Geometries of Charged Shells

    Get PDF
    We construct a static axisymmetric wormhole from the gravitational field of two charged shells which are kept in equilibrium by their electromagnetic repulsion. For large separations the exterior tends to the Majumdar-Papapetrou spacetime of two charged particles. The interior of the wormhole is a Reissner-Nordstr\"om black hole matching to the two shells. The wormhole is traversable and connects to the same asymptotics without violation of energy conditions. However, every point in the Majumdar-Papapetrou region lies on a closed timelike curve.Comment: 9 pages, LaTeX, 1 figur

    String Supported Wormhole Spacetimes and Causality Violations

    Get PDF
    We construct a static axisymmetric wormhole from the gravitational field of two Schwarzschild particles which are kept in equilibrium by strings (ropes) extending to infinity. The wormhole is obtained by matching two three-dimensional timelike surfaces surrounding each of the particles and thus spacetime becomes non-simply connected. Although the matching will not be exact in general it is possible to make the error arbitrarily small by assuming that the distance between the particles is much larger than the radius of the wormhole mouths. Whenever the masses of the two wormhole mouths are different, causality violating effects will occur.Comment: 12 pages, LaTeX, 1 figur
    corecore