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ABSTRACT

A proposed method for the accelerated predictions of modulus and
life times for time dependent polymer matrix composite laminates is pre-
sented. The method, based on the time-temperature superposition
principle and lamination theory, is described in detail. Unidirectional
reciprocal of compliance master curves and the shift functions needed are
presented and discussed. Master curves for arbitrarily oriented uni-
directional laminates are predicted and compared with experimental results
obtained from master curves generated from 1l5-minute tests and with 25-
hour tests. Good agreement is shown.

Predicted 30° and 60° unidirectional strength master curves are pre-
sented and comnpared to results of creep-rupture tests. Reasonable
agreement is demonstrated. In addition, creep-rupture results for a

[90°/i60°/90°]25 laminate are presented.
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INTRODUCTION

The merits of composite materials for potential use in structural
design are well established. Their high strength to weight ratio make
them attractive in aerospace and automotive applications where improved
fuel economy by welght reduction is desirable. Unfortunately, a number of
factors have inhibited the ready acceptance of such materials. First,
costs are high compared to conventional materials. With increased usage,
however, costs are likely to become increasingly competitive in the
future. Another, perhaps more serious limitation, is the current lack of
understanding of the mechanical behavior of polymer based laminates under
long term environmental exposure.

It is well known that the epoxXy resins which are now often used as
the polymer matrix component exhibit viscéelastic or time effects which
are significantly affected by exposure to both temperature and humidity.
Epoxies soften as temperatures are increased with resulting loss of both
moduli and scrength.l-4 In addition, they absorb moisture and swell
giving rise to residual stresses.”

Polymer based composite laminates will be similarly time dependent
and affected by moisture and temperature under certain circumstances.
f.ber dominated composites are not likely to suffer large reductions of
either moduli or strength in the fiber direction. 1In other directions,
time, temperature, and moisture dependent losses of both strength and
modulus are likely.

Because of the effects of environment, there is concern that time

dependent properties such as creep, relaxation, creep ruptures, etc., may
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be important long-term design considerations for the temperature and
moisture levels anticipated in current structural applications. It would
be desirable to be able to measure the environmental effects with short-
term laboratory tests rather than perform long-term prototype studies. 1In
addition, it would be desirable to be able to predict these effects with
analytical techniques for either short- or long-term situations. As a
result, it is clear that there is a need for accelerated characterization
techniques for laminates similar to those used for other structural
materials.

For metals and polymers a variety of techniques are available such
as linear elastic stress analysis, empirical extrapolative equations such
as the Larson-Miller parameter method, and the time-temperature super-
position principle. Several procedures have been proposed for the purpose
of making such lifetime or viscoelastic predictions of composite materials.
Some of these are the 'wear out model" proposed by Halpin, Jernia, and
Johnson,9 a non-linear viscoelastic technique proposed by Lou and
Schapery,lo and a combined viscoelastic~lamination theory model proposed
by De Runtz and Crossman.11 The former9 is a statistically based method
for the prediction of fatigue lifetimes and the 1attert?!! are methods
to predict environmental degradations of moduli or compliances.

The purpose of the work reported herein was to develop an accelerated
characterization method by which design information or predictions of long
time moduli and strength could be made from short-term tests on graphite/
epoxy laminates. 1In general, the procedure is based upon the time-
temperature superposition principle and the widely used lamination theory

for composite materials.

N




ACCELERATED CHARACTERIZATION AND FAILURE PREDICTION

The procedures for accelerated characterization and life time
predictions are outlined in Fig. 1. Using these proposed procedures a
designer can systematically incorporate predictions of long term visco-
elastic failures in the initial design process. That is, by use of the
method shown in Fig. 1, delayed failnres during the life time of a
structural component can be avoided. Thus, the ideas of Fig. 1 are for an
arbitrary polymer based composite laminate. In the discussion to follow,
the particular laminate being studied is a 350°F cured graphite/epoxy
system, T300/934.

The various experimental and analytical procedures undertaken to
verify the proposed methodology given in Fig. 1 are outlined below. The

letters of the items below agree with those identifying each task in Fig. 1.

ITEM A: Tests to Determine Lamina Modulus Master Curves

As previously mentioned, the proposed accelerated characterization
method is based upon the time-temperature superposition principle (TTSP)

for polymeric materials. The validity of the TTSP for the T300/934

graphite/epoxy system has been established.12

Figure 2 shows the results of short term (15 min.) creep tests on
a [90°]Ss specimen at various temperatures. The ordinate of this figure

is reciprocal of reduced compliance, which is calculated using12

=1 &)

22 T,

to be the glass transition temperature of 453°R), €(t) is the time

S where T = temperature (°R), To = reference temperature (taken

dependent axial strain, and o is the applied axial stress. Figure 2 also

shows a portion of the master curve, while Fig. 3 shows the complete




master curve. The master curve is obtained by horizontally shifting the
short-time data until a smooth curve is obtained. The amount of hori-
zontal shift at each temperature is the shift factor, ar-

Testing was performed at other fiber angles than 90°, and master
curves similar to Fig. 3 were constructed.13 The need for such master
curves will be subsequently discussed. It is assumed that reciprocal of
compliance, such as shown in Figs. 2 and 3, is equal to modulus. Such

an assumption appears to be justified.lé

ITEM B: Established Shift Function Relationship

Graphical shifting of short-time (15 min.) data to determine shift
factors as a function of temperature for various fiber angles gave the
results shown in Fig. 4. Examination of this figure reveals that the
shift function is relatively inse#sitive to fiber orientation. This result
is important when calculating lamina modulus for an arbitrary fiber angle

using anisotropic transformation equationms.

ITEM C: Predicted Lamina Modulus for Arbitrary Fiber Angle

The viscoelastic compliance of an arbitrary ply in a general
laminate (which is assumed to be the same as a unidirectional laminate of
the same fiber orientation) for any time t may be found using the ortho-

tropic transformation equation

_ 4 2.2 4 2.2
Sxx(t) =m Sll + 2mn 812 +n Szz(t) + m“n 866(t) (1)

where Sxx(t) is the time dependent compliance in the load direction for a
specimen with the fibers oriented 6 degrees from the loading axis,

m= cos 6, n = sin O, and Sll’ 512, 522, and 566 are components of the

e
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principal compliance‘matrix.lg A previous study12 found S11 and 512 to
be independent of time for our graphite/epoxy material. The time
dependent compliances Szz(t) and 566(t) are found from creep tests of
specimens with fiber orientations of 90° and 10°, respectivel}'.12

Figure 5 shows a comparison betrsen the predicted master curve using
equation (1) and those obtained using the time-temperature superposition
principle with short-term (15 min.) tests for a specimen whose fibers are
at an angle of 30° with the load axis. Similar comparisons were made
for other fiber orientations and in all cases agreement was moderate to
good.13
To further validate the predictive ability of equation (1) and the
applicability of the time-temperature superposition principle, medium-
term, 25-hour c¢reep tests were also run for a number of fiber angles.
Figures 3 and ) show the results for 90° and 30°, respectively. Favorable
comparisons exist between the results using the time-temperature super-
position principle (15-min. tests), the transformation equation (1), and
the medium~term, 25~hour data. Similar results were obtained for other
orientations.l3
ITEM D: Lamina Modulus Master Curve for Arbitrary Temperature and

Fiber Angle

Given the information in A, B and C, a master curve for the modulus
of a lamina or ply of arbitrary fiber orientation can be found for an
arbitrary reference temperature. This is needed input for any computa-
tional scheme to predict laminate failure, as shown in Item G.

For example, Fig. 6 shows master curves, at three temperatures, for

a laminate with a fiber orientation of 30°. These curves were generated
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using thi» 180°C master curve (Fig. 5), the transformation eguation (1),
and the shift function-temperature relationship shown in Fig. 4. Similar

results may be found for other fiber orientations.

ITEM E: Predicted Laminz Strength for Arbitrary Fiber Angle

The strengths of laminates of various fiber orientations were ob-
tained by ramp loading the specimens to failure. Figure 7 shows the
results for two temperatures. The theoretical predictions were made

using the Puppo-Evensen failure criterion16 given by
- ~2

[A%]

AR X 2r 297, 21 c2.1° ]’ i
1 cos” 6 i 11{lcos &} isin”6 sin 8 cos € sin ©
77 I x 1 TV TX x|t X X (2)
Ox L 11 £022; L 11 3L 22 L 722 ] s 66 i
r N 2 x 5 1T 2-’ - ,)'2 r 52
1 .|cos™8 1722| |cos“6]lsin"6 sin”§ cos § sin &
2 7 VT T IX o -t A + X (3)
Ix 11 | 1)t iy f22 22 | L “66 ]
2 n
3X66
where vy = X X
11 “22]
and Gx = applied uniaxial stress, Xll is the strength of a 0° specimen,
X22 is the strength of a 90° specimen, X66 is the strength of a 10° speci-

men, and n is a material parameter. Using a value of n = 1, it was found
that equation (2) gave good correlations for 6 < 45°, and equation (3)
gave good correlations for € > 45°.
ITEM F: Lamina Strength Master Curve for Arbitrary Temperature and Fiber
Angle

Due to the length of time needed to perform enough testing to ex-
perimentally determine strength master curves for an arbitrary temperature
and for arbitrary fiber angles, it was assumed that strength master curves

would have the same shape with the same shift function as the corresponding

T T
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compliance master curve. As a result strength master curves were deter-
mined by using the corresponding ramp loaded strengthsl7 and the known
shape of the compliance master curves and shift function from Items A, B
and D. Portions of strength master curves so generated are shown in Figs.
8 and 9 for fiber orientations of 30° and 60°, respectively. Alsc shown
in Figs. 8 and 9 are the results of creep rupture tests.

Deviations between predicted and measured creep rupture stresses are
less than 257 over the range of data. However, predictions on creep to
rupture times differ with measurements from one to three orders of magni-
tude. Such large errors appear to be inherent in a creep rupture

18
process.

ITEM G: Incremental Lamination Theory Based on Master Curves to Predict
Long-Term Laminate Response ’

Using the well known time independent lamination theory,19 an incre~
mental lamination theory could be developed which would predict the
moduli and strength of arbitrary laminates based upon the lamina modulus
and strength master curves developed in Items D and F. Efforts are under-
way to develop the incremental lamination theory. The results will be

presented at a later date.

ITEX H: Long-Term Laminate Tests to Verify Long-Term Predictioms

The results of creep rupture tests for a [90°/i60°/90°]2s laminate
are shown in Fig. 10. There is a large amount of scatter in the data.
As previously stated, such scatter appears to be inherent in a creep

rupture process. Comparison between predicted results (Item G) and

experimental results are not available at this time.

2 S U
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SUMMARY AND CONCLUSIONS

The purpose of the work reported herein was to develop an accelerated

f " characterization method by which long-term predictions of time dependent
% . moduli and strength could be made on the basis of short—time laboratory
tests. The method was based on the time~temperature superposition
principle and lamination theory.

Several key assumptions were made regarding the accelerated

characterization method shown in Fig. 1. For example, the orthotropic ;

DA Gl

transformation equation for composites was assumed to be valid for time

dependent moduli (Item C). Figure 5 shows that this assumption is

b & e, s

reasonably correct.

The TTSP was assumed to be valid for both moduli and strengths, and
strength master curves were assumed to have the same shape as modulus
master curves. These assumptions led to predictions of lamina strength
which were in error less than 25% from measured strengths, as shown in
Figs. 8 and 9.

It was also assumed that classical lamination theory, in incre-

mental form, was valid. The validity of this assumption awaits development

of an incremental lamination theory, and comparison with the experimental

: ' results shown in Fig. 10.

It should be noted that all data generated herein was for small

stress and strain levels such that linear viscoelastic concepts be ;
. applicable. When failures such as creep ruptures occur, stresses and

strains at the point of failure are high, and nonlinear processes are

: likely to be involved. Thus, it is reasonable to assume that master
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curves and shift functions are also likely to be stress dependent.

Without further experimental evidence, it is likely that nonlinear processes
may result in large variations between predictions and the experimental
results shown in Fig. 10.

Finally, a time independent failure law of Puppo and Evensen was
assumed to be valid by simply including time dependent data in deter-
mining the necessary constants. Further work is needed to validate this
assumption.

Efforts are underway to investigation the nonlinear effects, to find
a time dependent failure law, and to incorporate these into the lamina-

tion theory process for moduli and strength predictionms.
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Fig. 1.
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Flow Chart of the Proposed Procedures for Laminate Accelerated Characterization
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Fig. 2. Reduced Reciprocal of Compliance, 1/522, and Portion of 180°C
Master Curve for [90°]88 T300/934 Graphite/Epoxy Laminate
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