1,145 research outputs found
The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came
Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode
MODIFICIRANO SPAJANJE JEDNOSTAVNIH SLIKA ZA PROSTORNU DOMENU
The aim of Image fusion is to combine the information from number of images of the same scene from different images with focus on different objects. The result of image is more informative and of better quality often the entropy content of the resultant image is poor due to improper local fusing. In this paper a comparative study and modified spatial domain approach is presented by fixing the contrast values of pixel in between the Average -minimum, and Average-Maximum to get better fusion capabilities. Experimental results demonstrates that the few of the proposed techniques outperform the existing techniques in terms of SNR and PSNR.Cilj fuzije slika je kombinirati podatke iz više fotografija iste scene sa raznih slika s naglaskom na različite objekte. Rezultat je slika koja je više informativna i kvalitetnija, ali često sadržajno entropija finalne slike je slaba zbog nepravilnog lokalne fuzije. U ovom radu provedeno je komparativno istraživanje i pristup modificiranja prostorne domene, predstavljeno kroz učvršćivanje kontrasta vrijednosti piksela između prosječnog minimalnog i prosječno maksimalnog da bi dobili bolje fuzijske karakteristike. Eksperimentalni rezultati pokazuju da neke od predloženih tehnika nadmašuju postojeće tehnike u smislu SNR i PSNR
A Framework for Participatory Impact Assessment: involving stakeholders in European policy making, a case study of land use change in Malta
A Framework for Participatory Impact Assessment is presented for use within European land use policy impact assessment. The context and rationale for the development of the Framework are outlined, both in the context of European policy making and within a project called "Sustainability Impact Assessment: Tools for Environmental, Social and Economic Effects of Multifunctional Land Use in European Regions". A detailed description of the sequence of methods that make up the Framework is provided, followed by illustrations and details of the practical application and results from a case study in Malta, where the Framework was used to carry out an impact assessment of biodiversity policies. After reporting on the reflections of the research team and valuable feedback provided by Maltese stakeholders, the Framework’s ability to enhance the quality, credibility and legitimacy of European policy impact assessment is discusse
Midinfrared third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes
We report the observation of strong third-harmonic generation from a macroscopic array of aligned
ultralong single-wall carbon nanotubes (SWCNTs)with intensemidinfrared radiation. Through power-dependent
experiments, we determined the absolute value of the third-order nonlinear optical susceptibility !(3) of our
SWCNT film to be 5.53 × 10−12 esu, three orders of magnitude larger than that of the fused silica reference we
used. Taking account of the filling factor of 8.75% for our SWCNT film, we estimate a !(3) of 6.32 × 10−11 esu
for a fully dense film. Furthermore, through polarization-dependent experiments, we extracted all the nonzero
elements of the !(3) tensor, determining the magnitude of the weaker tensor elements to be #1/6 of that of the
dominant !(3)
zzzz component
Combined numerical and experimental investigation of surface textured journal bearings [Abstract]
Combined numerical and experimental investigation of surface textured journal bearings [Abstract
Isotope effects and possible pairing mechanism in optimally doped cuprate superconductors
We have studied the oxygen-isotope effects on T_{c} and in-plane penetration
depth \lambda_{ab}(0) in an optimally doped 3-layer cuprate
Bi_{1.6}Pb_{0.4}Sr_{2}Ca_{2}Cu_{3}O_{10+y} (T_{c} \sim 107 K). We find a small
oxygen-isotope effect on T_{c} (\alpha_{O} = 0.019), and a substantial effect
on \lambda_{ab} (0) (\Delta \lambda_{ab} (0)/\lambda_{ab} (0) = 2.5\pm0.5%).
The present results along with the previously observed isotope effects in
single-layer and double-layer cuprates indicate that the isotope exponent
\alpha_{O} in optimally doped cuprates is small while the isotope effect on the
in-plane effective supercarrier mass is substantial and nearly independent of
the number of the CuO_{2} layers. A plausible pairing mechanism is proposed to
explain the isotope effects, high-T_{c} superconductivity and tunneling spectra
in a consistent way.Comment: 5 pages, 4 figure
Compressed sensing reconstruction for high-SNR, rapid dissolved 129Xe gas exchange MRI
Purpose
Three-dimensional hyperpolarized 129Xe gas exchange imaging suffers from low SNR and long breath-holds, which could be improved using compressed sensing (CS). The purpose of this work was to assess whether gas exchange ratio maps are quantitatively preserved in CS-accelerated dissolved-phase 129Xe imaging and to investigate the feasibility of CS-dissolved 129Xe imaging with reduced-cost natural abundance (NA) xenon.
Methods
129Xe gas exchange imaging was performed at 1.5 T with a multi-echo spectroscopic imaging sequence. A CS reconstruction with an acceleration factor of 2 was compared retrospectively with conventional gridding reconstruction in a cohort of 16 healthy volunteers, 5 chronic obstructive pulmonary disease patients, and 23 patients who were hospitalized following COVID-19 infection. Metrics of comparison included normalized mean absolute error, mean gas exchange ratio, and red blood cell (RBC) image SNR. Dissolved 129Xe CS imaging with NA xenon was assessed in 4 healthy volunteers.
Results
CS reconstruction enabled acquisition time to be halved, and it reduced background noise. Median RBC SNR increased from 6 (2–18) to 11 (2–100) with CS, and there was strong agreement between CS and gridding mean ratio map values (R2 = 0.99). Image fidelity was maintained for gridding RBC SNR > 5, but below this, normalized mean absolute error increased nonlinearly with decreasing SNR. CS increased the mean SNR of NA 129Xe images 3-fold.
Conclusion
CS reconstruction of dissolved 129Xe imaging improved image quality with decreased scan time, while preserving key gas exchange metrics. This will benefit patients with breathlessness and/or low gas transfer and shows promise for NA-dissolved 129Xe imaging
- …