2,526 research outputs found

    Broughton Archipelago Clam Terrace Survey : final report

    Get PDF
    During a 1995 aerial video survey of the coastline of Johnstone Strait, an unusual shoreline feature was noted and termed “clam terraces” (inset) because of the terrace-type morphology and the apparent association with high clam productivity on the sandflats. Typical alongshore lengths of the terrace ridges are 20-50m, and across-shore widths are typically 20-40m. An area with an especially high density of clam terraces was noted in the Broughton Archipelago, between Broughton and Gilford Islands of southeastern Queen Charlotte Strait. Clam terraces in this area were inventoried from the aerial video imagery to quantify their distribution. The terraces accounted for over 14 km of shoreline and 365 clam terraces were documented. A three-day field survey by a coastal geomorphologist, archeologist and marine biologist was conducted to document the features and determine their origin. Nine clam terraces were surveyed. The field observations confirmed that: the ridges are comprised of boulder/cobblesized material, ridge crests are typically in the range of 1-1.5m above chart datum, sandflats are comprised almost entirely of shell fragments (barnacles and clams) and sandflats have very high shellfish production. There are an abundance of shell middens in the area (over 175) suggesting that the shellfish associated with the terraces were an important food source of aboriginal peoples. The origin of the ridges is unknown; they appear to be a relict feature in that they are not actively being modified by present-day processes. The ridges may be a relict sea-ice feature, although the mechanics of ridge formation is uncertain. Sand accumulates behind the ridge because the supply rate of the shell fragments exceeds the dispersal rate in these low energy environments. The high density areas of clam terraces correspond to high density areas of shell middens, and it is probable that the clam terraces were subjected to some degree of modification by aboriginal shellfish gatherers over the thousands of years of occupation in the region. (Document contains 39 pages

    Legal Issues in the Regulation of On-Premise Signs

    Get PDF

    tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: A 7T magnetic resonance spectroscopy study

    Get PDF
    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability in a polarity specific manner and has been shown to influence learning and memory. tDCS may have both on-line and after-effects on learning and memory, and the latter are thought to be based upon tDCS-induced alterations in neurochemistry and synaptic function. We used ultra-high-field (7 T) magnetic resonance spectroscopy (MRS), together with a robotic force adaptation and de-adaptation task, to investigate whether tDCS-induced alterations in GABA and Glutamate within motor cortex predict motor learning and memory. Note that adaptation to a robot-induced force field has long been considered to be a form of model-based learning that is closely associated with the computation and ‘supervised’ learning of internal ‘forward’ models within the cerebellum. Importantly, previous studies have shown that on-line tDCS to the cerebellum, but not to motor cortex, enhances model-based motor learning. Here we demonstrate that anodal tDCS delivered to the hand area of the left primary motor cortex induces a significant reduction in GABA concentration. This effect was specific to GABA, localised to the left motor cortex, and was polarity specific insofar as it was not observed following either cathodal or sham stimulation. Importantly, we show that the magnitude of tDCS-induced alterations in GABA concentration within motor cortex predicts individual differences in both motor learning and motor memory on the robotic force adaptation and de-adaptation task

    An initial assessment of native and invasive tunicates in shellfish aquaculture of the North American east coast

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Applied Ichthyology 26, Supple.s2 (2010): 8-11, doi:10.1111/j.1439-0426.2010.01495.x.The objective of the study was to assess the distribution of native and invasive tunicates in the fouling community of shellfish aquaculture gear along the U.S. east coast of the Atlantic. Since the 1980s, several species of invasive tunicates have spread throughout the coastal waters of the North American east coast and have become dominant fouling organisms on docks, boat hulls, mooring lines, and in shellfish aquaculture. Invasive and native tunicates negatively impact shellfish aquaculture through increased maintenance costs and reduced shellfish growth. While the presence of alien tunicates has been well documented at piers, harbors, and marinas, there are few published reports of invasive tunicate impacts to aquaculture. We surveyed shellfish aquaculture operations at Martha’s Vineyard, Massachusetts and shellfish aquaculturists in other areas along the North American east coast and report high levels of fouling caused by seven invasive, three native, and two cryptogenic species of tunicates. All study sites were fouled by one or more tunicate species. Biofouling control treatments varied among aquaculture sites and were effective in removing tunicates. Invasive and native tunicates should be considered when assessing the economic impacts of fouling organisms to the aquaculture industry.This work was funded in part by Sailors’ Snug Harbor of Boston, the Adelaide and Charles Link Foundation, and the NOAA Aquatic Invasive Species Program

    In vitro cytotoxicity of water soluble silver (Ag) nanoparticles on HaCat and A549 cell lines

    Get PDF
    The wide range of applications of silver nanoparticles (AgNPs) in commercial products, including food packaging, has encouraged researchers to come up with novel preparation methods for the production of these robust materials. The methods resulting in the formation of NPs for such commercial applications clearly demand a good accounting of their toxicity aspects to humans as well as the environment. We herein present a chemical preparation method for the production of size- and shape-defined AgNPs and investigate the impact of these nanoparticles on HaCat and A549 cell lines. Findings show that lung cells (A549) are more sensitive than skin cells (HaCat) to Ag induced toxicity, evident by the significantly (p<0.05) reduced LC50 for all NPs under study. The current investigation showed that the extent of surface capping agent (citrate) and size influenced the cell toxicity, where a lesser surface coverage (zeta potential, ζ, -27.7 mV) and smaller size (~17 nm) enhanced the toxicity compared to comparatively bigger particles (~39 nm) with higher surface coverage (ζ, -47.3 mV). The size- and shape-defined particles such as triangles which have proven useful for many applications, due to their high energy/high field edges, were found to be less toxic against biological cell lines and therefore may have potential to be used in food packaging applications as reservoirs of silver ions. A striking difference in cell line toxicity within such a small size window clearly demonstrates the vital roles played by the smaller size, difference in shape and lesser surface coverage in defining a higher passive cell membrane diffusion followed by silver dissolution inside cell cytoplasm increasing cytotoxicity

    Increased GABA Contributes to Enhanced Control over Motor Excitability in Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a developmental neurological disorder characterized by vocal and motor tics [1] and associated with cortical-striatal-thalamic-cortical circuit dysfunction [2, 3], hyperexcitability within cortical motor areas [4], and altered intracortical inhibition [4, 5, 6, 7]. TS often follows a developmental time course in which tics become increasingly more controlled during adolescence in many individuals [1], who exhibit enhanced control over their volitional movements [8, 9, 10, 11]. Importantly, control over motor outputs appears to be brought about by a reduction in the gain of motor excitability [6, 7, 12, 13]. Here we present a neurochemical basis for a localized gain control mechanism. We used ultra-high-field (7 T) magnetic resonance spectroscopy to investigate in vivo concentrations of γ-aminobutyric acid (GABA) within primary and secondary motor areas of individuals with TS. We demonstrate that GABA concentrations within the supplementary motor area (SMA)—a region strongly associated with the genesis of motor tics in TS [14]—are paradoxically elevated in individuals with TS and inversely related to fMRI blood oxygen level-dependent activation. By contrast, GABA concentrations in control sites do not differ from those of a matched control group. Importantly, we also show that GABA concentrations within the SMA are inversely correlated with cortical excitability in primary motor cortex and are predicted by motor tic severity and white-matter microstructure (FA) within a region of the corpus callosum that projects to the SMA within each hemisphere. Based upon these findings, we propose that extrasynaptic GABA contributes to a form of control, based upon localized tonic inhibition within the SMA, that may lead to the suppression of tics
    • 

    corecore