15 research outputs found

    Genome Sequencing and Pan-Genome Analysis of 23 Corallococcus spp. Strains Reveal Unexpected Diversity, With Particular Plasticity of Predatory Gene Sets

    Get PDF
    Corallococcus is an abundant genus of predatory soil myxobacteria, containing two species, C. coralloides (for which a genome sequence is available) and C. exiguus. To investigate the genomic basis of predation, we genome-sequenced 23 Corallococcus strains. Genomic similarity metrics grouped the sequenced strains into at least nine distinct genomospecies, divided between two major sub-divisions of the genus, encompassing previously described diversity. The Corallococcus pan-genome was found to be open, with strains exhibiting highly individual gene sets. On average, only 30.5% of each strain’s gene set belonged to the core pan-genome, while more than 75% of the accessory pan-genome genes were present in less than four of the 24 genomes. The Corallococcus accessory pan-proteome was enriched for the COG functional category “Secondary metabolism,” with each genome containing on average 55 biosynthetic gene clusters (BGCs), of which only 20 belonged to the core pan-genome. Predatory activity was assayed against ten prey microbes and found to be mostly incongruent with phylogeny or BGC complement. Thus, predation seems multifactorial, depending partially on BGC complement, but also on the accessory pan-genome – genes most likely acquired horizontally. These observations encourage further exploration of Corallococcus as a source for novel bioactive secondary metabolites and predatory proteins.</p

    The importance of extracellular vesicle purification for downstream analysis:A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens

    Get PDF
    BackgroundRobust protocols for the isolation of extracellular vesicles (EVs) from the rest of their excretory-secretory products are necessary for downstream studies and application development. The most widely used purification method of EVs for helminth pathogens is currently differential centrifugation (DC). In contrast, size exclusion chromatography (SEC) has been included in the purification pipeline for EVs from other pathogens, highlighting there is not an agreed research community ‘gold standard’ for EV isolation. In this case study, Fasciola hepatica from natural populations were cultured in order to collect EVs from culture media and evaluate a SEC or DC approach to pathogen helminth EV purification.Methodology/Principal findingsTransmission electron and atomic force microscopy demonstrated that EVs prepared by SEC were both smaller in size and less diverse than EV resolved by DC. Protein quantification and Western blotting further demonstrated that SEC purification realised a higher EV purity to free excretory-secretory protein (ESP) yield ratio compared to DC approaches as evident by the reduction of soluble free cathepsin L proteases in SEC EV preparations. Proteomic analysis further highlighted DC contamination from ESP as shown by an increased diversity of protein identifications and unique peptide hits in DC EVs as compared to SEC EVs. In addition, SEC purified EVs contained less tegumental based proteins than DC purified EVs.Conclusions/SignificanceThe data suggests that DC and SEC purification methods do not isolate equivalent EV population profiles and caution should be taken in the choice of EV purification utilised, with certain protocols for DC preparations including more free ES proteins and tegumental artefacts. We propose that SEC methods should be used for EV purification prior to downstream studies.</div

    Parasitic helminths and the host microbiome:A missing ‘extracellular vesicle-sized’ link?

    Get PDF
    Infections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk. Here, we explore knowledge of helminth EVs with an emphasis on their putative antimicrobial properties, and we argue that (i) an enhanced understanding of the mechanisms governing such interactions might assist the discovery and development of novel strategies of parasite control, and that (ii) the identification and characterisation of helminth molecules with antimicrobial properties might pave the way towards the discovery of novel antibiotics, thus aiding the global fight against antimicrobial resistance

    Evidence of sequestration of triclabendazole and associated metabolites by extracellular vesicles of <i>Fasciola hepatica</i>

    Get PDF
    Fascioliasis is a neglected zoonotic disease that infects humans and ruminant species worldwide. In the absence of vaccines, control of fascioliasis is primarily via anthelminthic treatment with triclabendazole (TCBZ). Parasitic flatworms, including Fasciola hepatica, are active secretors of extracellular vesicles (EVs), but research has not been undertaken investigating EV anthelmintic sequestration. Adult F. hepatica were cultured in lethal and sub-lethal doses of TCBZ and its active metabolites, in order to collect EVs and evaluate their morphological characteristics, production and anthelmintic metabolite content. Transmission electron microscopy demonstrated that F. hepatica exposed to TCBZ and its metabolites produced EVs of similar morphology, compared to non-TCBZ exposed controls, even though TCBZ dose and/or TCBZ metabolite led to measurable structural changes in the treated F. hepatica tegument. qNano particle analysis revealed that F. hepatica exposed to TCBZ and its metabolites produced at least five times greater EV concentrations than non-TCBZ controls. A combined mass spectrometry and qNano particle analysis confirmed the presence of TCBZ and the TCBZ–sulphoxide metabolite in anthelmintic exposed EVs, but limited TCBZ sulphone was detectable. This data suggests that EVs released from adult F. hepatica have a biological role in the sequestration of TCBZ and additional toxic xenobiotic metabolites

    Using next-generation sequencing to determine diversity of horse intestinal worms:Identifying the equine ʼnemabiome'

    Get PDF
    Next generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine ‘nemabiome’. In all equine faecal samples investigated, multiple species of Strongylidae were detected; ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive, relies on DNA analysis avoiding the need for specialist microscopy identification and can be carried out with small samples providing significant advantages over current methods
    corecore