30 research outputs found

    Comparison of anticipated and actual control group outcomes in randomised trials in paediatric oncology provides evidence that historically controlled studies are biased in favour of the novel treatment

    Get PDF
    BACKGROUND: Historically controlled studies are commonly undertaken in paediatric oncology, despite their potential biases. Our aim was to compare the outcome of the control group in randomised controlled trials (RCTs) in paediatric oncology with those anticipated in the sample size calculations in the protocols. Our rationale was that, had these RCTs been performed as historical control studies instead, the available outcome data used to calculate the sample size in the RCT would have been used as the historical control outcome data. METHODS: A systematic search was undertaken for published paediatric oncology RCTs using the Cochrane Central Register of Controlled Trials (CENTRAL) database from its inception up to July 2013. Data on sample size assumptions and observed outcomes (timetoevent and proportions) were extracted to calculate differences between randomised and historical control outcomes, and a one-sample t-test was employed to assess whether the difference between anticipated and observed control groups differed from zero. RESULTS: Forty-eight randomised questions were included. The median year of publication was 2005, and the range was from 1976 to 2010. There were 31 superiority and 11 equivalence/noninferiority randomised questions with time-to-event outcomes. The median absolute difference between observed and anticipated control outcomes was 5.0% (range: -23 to +34), and the mean difference was 3.8% (95% CI: +0.57 to +7.0; P = 0.022). CONCLUSIONS: Because the observed control group (that is, standard treatment arm) in RCTs performed better than anticipated, we found that historically controlled studies that used similar assumptions for the standard treatment were likely to overestimate the benefit of new treatments, potentially leading to children with cancer being given ineffective therapy that may have additional toxicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1745-6215-15-481) contains supplementary material, which is available to authorized users

    Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Get PDF
    Purpose Neuroblastoma may be treated with molecular radiotherapy, 131I meta-Iodobenzylguanidine and 177Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Methods Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Results Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% – 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. Conclusions As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure

    International randomised controlled trial for the treatment of newly diagnosed EWING sarcoma family of tumours - EURO EWING 2012 Protocol

    Get PDF
    [Background] Although there have been multiple randomised trials in newly diagnosed Ewing sarcoma family of tumours (ESFT) and these have been conducted over many years and involved many international cooperative groups, the outcomes for all stages of disease have plateaued. Internationally, the standard treatment of ESFT is not defined, and there is a need to add new agents other than conventional chemotherapy to improve outcomes. This trial will compare two different induction/consolidation chemotherapy regimens: (1) vincristine, ifosfamide, doxorubicin and etoposide (VIDE) induction and vincristine, actinomycin D, ifosfamide or cyclophosphamide, or busulfan and mephalan (VAI/VAC/BuMel) consolidation and (2) vincristine, doxorubicin, cyclophosphamide, ifosfamide and etoposide (VDC/IE) induction and ifosfamide and etoposide, vincristine and cyclophosphamide, vincristine, actinomycin D and ifosfamide, or busulfan and mephalan (IE/VC/VAI/BuMel) consolidation (randomisation 1, or R1). A second randomisation (R2) will determine whether the addition of zoledronic acid to consolidation chemotherapy, as assigned at R1, is associated with improved clinical outcome.[Methods] EURO EWING 2012 is an international, multicentre, phase III, open-label randomised controlled trial. There are two randomisations: R1 and R2. Patients are randomly assigned at two different time points: at entry to the trial (R1) and following local control therapy (R2). The primary outcome measure is event-free survival. The secondary outcome measures include overall survival, adverse events and toxicity, histological response of the primary tumour, response of the primary tumour, regional lymph nodes or metastases (or both), and achievement of local control at the end of treatment.[Discussion] This study will establish which is the “standard regimen” of chemotherapy, taking into account both clinical outcomes and toxicity. This will form the chemotherapy backbone for future interventional studies where we may want to add new targeted agents. It will also determine the role of zoledronic acid in conjunction with the separate EE2008 trial. Any trial in ESFT needs to take into account the rarity of the tumour and consider that international cooperation is needed to provide answers in a timely manner.[Trial registration] Registered with EudraCT number 2012-002107-17 on 26 February 2012. Registered with ISRCTN number 92192408 on 4 November 2013.This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement n°602856. The NCC in France, CLB, receives additional funding from SFCE and Ligue contre le cancer. The coordinating sponsor (the University of Birmingham, Birmingham, UK) is funded by Cancer Research UK (grant award reference C5952/A14745)

    3D genomics across the tree of life reveals condensin II as a determinant of architecture type

    Get PDF
    We investigated genome folding across the eukaryotic tree of life. We find two types of three-dimensional(3D) genome architectures at the chromosome scale. Each type appears and disappears repeatedlyduring eukaryotic evolution. The type of genome architecture that an organism exhibits correlates with theabsence of condensin II subunits. Moreover, condensin II depletion converts the architecture of thehuman genome to a state resembling that seen in organisms such as fungi or mosquitoes. In this state,centromeres cluster together at nucleoli, and heterochromatin domains merge. We propose a physicalmodel in which lengthwise compaction of chromosomes by condensin II during mitosis determineschromosome-scale genome architecture, with effects that are retained during the subsequent interphase.This mechanism likely has been conserved since the last common ancestor of all eukaryotes.C.H. is supported by the Boehringer Ingelheim Fonds; C.H., Á.S.C., and B.D.R. are supported by an ERC CoG (772471, “CohesinLooping”); A.M.O.E. and B.D.R. are supported by the Dutch Research Council (NWO-Echo); and J.A.R. and R.H.M. are supported by the Dutch Cancer Society (KWF). T.v.S. and B.v.S. are supported by NIH Common Fund “4D Nucleome” Program grant U54DK107965. H.T. and E.d.W. are supported by an ERC StG (637597, “HAP-PHEN”). J.A.R., T.v.S., H.T., R.H.M., B.v.S., and E.d.W. are part of the Oncode Institute, which is partly financed by the Dutch Cancer Society. Work at the Center for Theoretical Biological Physics is sponsored by the NSF (grants PHY-2019745 and CHE-1614101) and by the Welch Foundation (grant C-1792). V.G.C. is funded by FAPESP (São Paulo State Research Foundation and Higher Education Personnel) grants 2016/13998-8 and 2017/09662-7. J.N.O. is a CPRIT Scholar in Cancer Research. E.L.A. was supported by an NSF Physics Frontiers Center Award (PHY-2019745), the Welch Foundation (Q-1866), a USDA Agriculture and Food Research Initiative grant (2017-05741), the Behavioral Plasticity Research Institute (NSF DBI-2021795), and an NIH Encyclopedia of DNA Elements Mapping Center Award (UM1HG009375). Hi-C data for the 24 species were created by the DNA Zoo Consortium (www.dnazoo.org). DNA Zoo is supported by Illumina, Inc.; IBM; and the Pawsey Supercomputing Center. P.K. is supported by the University of Western Australia. L.L.M. was supported by NIH (1R01NS114491) and NSF awards (1557923, 1548121, and 1645219) and the Human Frontiers Science Program (RGP0060/2017). The draft A. californica project was supported by NHGRI. J.L.G.-S. received funding from the ERC (grant agreement no. 740041), the Spanish Ministerio de Economía y Competitividad (grant no. BFU2016-74961-P), and the institutional grant Unidad de Excelencia María de Maeztu (MDM-2016-0687). R.D.K. is supported by NIH grant RO1DK121366. V.H. is supported by NIH grant NIH1P41HD071837. K.M. is supported by a MEXT grant (20H05936). M.C.W. is supported by the NIH grants R01AG045183, R01AT009050, R01AG062257, and DP1DK113644 and by the Welch Foundation. E.F. was supported by NHGR

    Flexible trial design in a rare condition

    No full text

    Outcomes of non-anaplastic stage III and ‘inoperable’ Wilms tumour treated in the UKW3 trial

    No full text
    © 2018 Background and purpose: To describe the outcome of patients with stage III Wilms tumours (WT) treated in the UKW3 trial. Material and methods: Patients with a pathologically confirmed stage III non-anaplastic WT at nephrectomy (Group A) or with an ‘inoperable’ tumour at diagnosis managed by biopsy and pre-operative chemotherapy (Actinomycin D-Vincristine-Doxorubicin) but stage I or II at subsequent nephrectomy (Group B) were included. Results: The 4-year overall (OS)/event free survival (EFS) for Group A (n = 117) patients was 90%(95%CI:83–94)/81%(CI:73–87) and for Group B (n = 32) 94%(CI:77–98)/88%(CI:70–95). The 4-year OS/EFS of patients with pathological stage III WT according to whether they received flank/abdominal radiotherapy (95 patients) or not (37 patients, 22 from UKW3 pooled with 17 patients from UKW2) were 91%(CI:83–95)/82%(CI:73–89), and 84%(CI:67–92)/78%(CI:61–89), respectively. The 4-year OS/EFS for patients having one reason to be stage III versus two or three was 92%(CI:84–96)/83%(CI:73–90) and 85%(CI:70–93)/78%(CI:61–88), respectively. Conclusion: Our findings question the inclusion of biopsy or pre-operative chemotherapy as sole criterion for assigning a tumour stage III. Selected patients with pathological stage III WT can survive without radiotherapy. Whilst cautious interpretation is needed due to the post hoc nature of these analyses, further biological studies may better characterise those who could benefit from reduced therapy
    corecore