107 research outputs found

    Combined analysis of microbial metagenomic and metatranscriptomic sequencing data to assess in situ physiological conditions in the premature infant gut.

    Get PDF
    Microbes alter their transcriptomic profiles in response to the environment. The physiological conditions experienced by a microbial community can thus be inferred using meta-transcriptomic sequencing by comparing transcription levels of specifically chosen genes. However, this analysis requires accurate reference genomes to identify the specific genes from which RNA reads originate. In addition, such an analysis should avoid biases in transcript counts related to differences in organism abundance. In this study we describe an approach to address these difficulties. Sample-specific meta-genomic assembled genomes (MAGs) were used as reference genomes to accurately identify the origin of RNA reads, and transcript ratios of genes with opposite transcription responses were compared to eliminate biases related to differences in organismal abundance, an approach hereafter named the "diametric ratio" method. We used this approach to probe the environmental conditions experienced by Escherichia spp. in the gut of 4 premature infants, 2 of whom developed necrotizing enterocolitis (NEC), a severe inflammatory intestinal disease. We analyzed twenty fecal samples taken from four premature infants (4-6 time points from each infant), and found significantly higher diametric ratios of genes associated with low oxygen levels in samples of infants later diagnosed with NEC than in samples without NEC. We also show this method can be used for examining other physiological conditions, such as exposure to nitric oxide and osmotic pressure. These study results should be treated with caution, due to the presence of confounding factors that might also distinguish between NEC and control infants. Nevertheless, together with benchmarking analyses, we show here that the diametric ratio approach can be applied for evaluating the physiological conditions experienced by microbes in situ. Results from similar studies can be further applied for designing diagnostic methods to detect NEC in its early developmental stages

    Proceedings of the 2014 A.S.P.E.N. Research Workshop

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141886/1/jpen0167.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141886/2/jpen0167-sup-0001.pd

    Genome resolved analysis of a premature infant gut microbial community reveals a Varibaculum cambriense genome and a shift towards fermentation-based metabolism during the third week of life.

    Get PDF
    BACKGROUND: The premature infant gut has low individual but high inter-individual microbial diversity compared with adults. Based on prior 16S rRNA gene surveys, many species from this environment are expected to be similar to those previously detected in the human microbiota. However, the level of genomic novelty and metabolic variation of strains found in the infant gut remains relatively unexplored. RESULTS: To study the stability and function of early microbial colonizers of the premature infant gut, nine stool samples were taken during the third week of life of a premature male infant delivered via Caesarean section. Metagenomic sequences were assembled and binned into near-complete and partial genomes, enabling strain-level genomic analysis of the microbial community.We reconstructed eleven near-complete and six partial bacterial genomes representative of the key members of the microbial community. Twelve of these genomes share >90% putative ortholog amino acid identity with reference genomes. Manual curation of the assembly of one particularly novel genome resulted in the first essentially complete genome sequence (in three pieces, the order of which could not be determined due to a repeat) for Varibaculum cambriense (strain Dora), a medically relevant species that has been implicated in abscess formation.During the period studied, the microbial community undergoes a compositional shift, in which obligate anaerobes (fermenters) overtake Escherichia coli as the most abundant species. Other species remain stable, probably due to their ability to either respire anaerobically or grow by fermentation, and their capacity to tolerate fluctuating levels of oxygen. Metabolic predictions for V. cambriense suggest that, like other members of the microbial community, this organism is able to process various sugar substrates and make use of multiple different electron acceptors during anaerobic respiration. Genome comparisons within the family Actinomycetaceae reveal important differences related to respiratory metabolism and motility. CONCLUSIONS: Genome-based analysis provided direct insight into strain-specific potential for anaerobic respiration and yielded the first genome for the genus Varibaculum. Importantly, comparison of these de novo assembled genomes with closely related isolate genomes supported the accuracy of the metagenomic methodology. Over a one-week period, the early gut microbial community transitioned to a community with a higher representation of obligate anaerobes, emphasizing both taxonomic and metabolic instability during colonization

    Epithelial NAD+ depletion drives mitochondrial dysfunction and contributes to intestinal inflammation

    Get PDF
    IntroductionWe have previously demonstrated that a pathologic downregulation of peroxisome proliferator-activated receptor–gamma coactivator 1-alpha (PGC1Ξ±) within the intestinal epithelium contributes to the pathogenesis of inflammatory bowel disease (IBD). However, the mechanism underlying downregulation of PGC1Ξ± expression and activity during IBD is not yet clear.MethodsMice (male; C57Bl/6, Villincre/+;Pgc1afl/fl mice, and Pgc1afl/fl) were subjected to experimental colitis and treated with nicotinamide riboside. Western blot, high-resolution respirometry, nicotinamide adenine dinucleotide (NAD+) quantification, and immunoprecipitation were used to in this study.ResultsWe demonstrate a significant depletion in the NAD+ levels within the intestinal epithelium of mice undergoing experimental colitis, as well as humans with ulcerative colitis. While we found no decrease in the levels of NAD+-synthesizing enzymes within the intestinal epithelium of mice undergoing experimental colitis, we did find an increase in the mRNA level, as well as the enzymatic activity, of the NAD+-consuming enzyme poly(ADP-ribose) polymerase-1 (PARP1). Treatment of mice undergoing experimental colitis with an NAD+ precursor reduced the severity of colitis, restored mitochondrial function, and increased active PGC1Ξ± levels; however, NAD+ repletion did not benefit transgenic mice that lack PGC1Ξ± within the intestinal epithelium, suggesting that the therapeutic effects require an intact PGC1Ξ± axis.DiscussionOur results emphasize the importance of PGC1Ξ± expression to both mitochondrial health and homeostasis within the intestinal epithelium and suggest a novel therapeutic approach for disease management. These findings also provide a mechanistic basis for clinical trials of nicotinamide riboside in IBD patients

    Fecal Microbiota in Premature Infants Prior to Necrotizing Enterocolitis

    Get PDF
    Intestinal luminal microbiota likely contribute to the etiology of necrotizing enterocolitis (NEC), a common disease in preterm infants. Microbiota development, a cascade of initial colonization events leading to the establishment of a diverse commensal microbiota, can now be studied in preterm infants using powerful molecular tools. Starting with the first stool and continuing until discharge, weekly stool specimens were collected prospectively from infants with gestational ages ≀32 completed weeks or birth weights≀1250 g. High throughput 16S rRNA sequencing was used to compare the diversity of microbiota and the prevalence of specific bacterial signatures in nine NEC infants and in nine matched controls. After removal of short and low quality reads we retained a total of 110,021 sequences. Microbiota composition differed in the matched samples collected 1 week but not <72 hours prior to NEC diagnosis. We detected a bloom (34% increase) of Proteobacteria and a decrease (32%) in Firmicutes in NEC cases between the 1 week and <72 hour samples. No significant change was identified in the controls. At both time points, molecular signatures were identified that were increased in NEC cases. One of the bacterial signatures detected more frequently in NEC cases (p<0.01) matched closest to Ξ³-Proteobacteria. Although this sequence grouped to the well-studied Enterobacteriaceae family, it did not match any sequence in Genbank by more than 97%. Our observations suggest that abnormal patterns of microbiota and potentially a novel pathogen contribute to the etiology of NEC

    Gut Microbial Gene Expression in Mother-Fed and Formula-Fed Piglets

    Get PDF
    Effects of diet on the structure and function of gut microbial communities in newborn infants are poorly understood. High-resolution molecular studies are needed to definitively ascertain whether gut microbial communities are distinct in milk-fed and formula-fed infants.Pyrosequencing-based whole transcriptome shotgun sequencing (RNA-seq) was used to evaluate community wide gut microbial gene expression in 21 day old neonatal piglets fed either with sow's milk (mother fed, MF; n = 4) or with artificial formula (formula fed, FF; n = 4). Microbial DNA and RNA were harvested from cecal contents for each animal. cDNA libraries and 16S rDNA amplicons were sequenced on the Roche 454 GS-FLX Titanium system. Communities were similar at the level of phylum but were dissimilar at the level of genus; Prevotella was the dominant genus within MF samples and Bacteroides was most abundant within FF samples. Screened cDNA sequences were assigned functional annotations by the MG-RAST annotation pipeline and based upon best-BLASTX-hits to the NCBI COG database. Patterns of gene expression were very similar in MF and FF animals. All samples were enriched with transcripts encoding enzymes for carbohydrate and protein metabolism, as well as proteins involved in stress response, binding to host epithelium, and lipopolysaccharide metabolism. Carbohydrate utilization transcripts were generally similar in both groups. The abundance of enzymes involved in several pathways related to amino acid metabolism (e.g., arginine metabolism) and oxidative stress response differed in MF and FF animals.Abundant transcripts identified in this study likely contribute to a core microbial metatranscriptome in the distal intestine. Although microbial community gene expression was generally similar in the cecal contents of MF and FF neonatal piglets, several differentially abundant gene clusters were identified. Further investigations of gut microbial gene expression will contribute to a better understanding of normal and abnormal enteric microbiology in animals and humans

    Pilot study of sources and concentrations of size-resolved airborne particles in a neonatal intensive care unit

    Full text link
    Infants in neonatal intensive care units (NICUs) are vulnerable to environmental stressors. Few studies have reported on airborne particles in the NICU environment. During a four-day pilot study in a private-style NICU, we measured size-resolved particle number (PN) concentrations with 1-min resolution. The investigation included simultaneous sampling in an unoccupied baby room and in an incubator of an otherwise normally functioning NICU. Background submicron (0.3-1 Β΅m) particle levels in the room were 3-4 orders of magnitude lower than outdoors, owing to high-efficiency particulate filtration of supply air. Airborne supermicron particles were detected in the room; their presence was attributed primarily to emissions from occupant movements. The fraction of in-room PN detected within an infant incubator ranged from 0.2 for particles &gt;10 Β΅m to 0.6 for particles with diameter 0.3-0.5 Β΅m. The incubator humidifier was a strong additional source of particles smaller than 5 Β΅m. Activities by researchers, designed to simulate caregiver visits, were associated with elevated particle concentrations across all measured size ranges, and were particularly discernible among larger particles. Concentrations increased with the number of occupants and with the duration and vigor of activities. The highest levels were observed when fabrics were handled. Against the low background in this environment, even small occupancy-associated perturbations – such as from a brief entry – were discernible. Measurements from a second NICU in a different US region were found to be broadly similar. A notable difference was higher submicron particle levels in the second NICU, attributed to elevated outdoor pollution

    Beyond Bacteria: A Study of the Enteric Microbial Consortium in Extremely Low Birth Weight Infants

    Get PDF
    Extremely low birth weight (ELBW) infants have high morbidity and mortality, frequently due to invasive infections from bacteria, fungi, and viruses. The microbial communities present in the gastrointestinal tracts of preterm infants may serve as a reservoir for invasive organisms and remain poorly characterized. We used deep pyrosequencing to examine the gut-associated microbiome of 11 ELBW infants in the first postnatal month, with a first time determination of the eukaryote microbiota such as fungi and nematodes, including bacteria and viruses that have not been previously described. Among the fungi observed, Candida sp. and Clavispora sp. dominated the sequences, but a range of environmental molds were also observed. Surprisingly, seventy-one percent of the infant fecal samples tested contained ribosomal sequences corresponding to the parasitic organism Trichinella. Ribosomal DNA sequences for the roundworm symbiont Xenorhabdus accompanied these sequences in the infant with the greatest proportion of Trichinella sequences. When examining ribosomal DNA sequences in aggregate, Enterobacteriales, Pseudomonas, Staphylococcus, and Enterococcus were the most abundant bacterial taxa in a low diversity bacterial community (mean Shannon-Weaver Index of 1.02Β±0.69), with relatively little change within individual infants through time. To supplement the ribosomal sequence data, shotgun sequencing was performed on DNA from multiple displacement amplification (MDA) of total fecal genomic DNA from two infants. In addition to the organisms mentioned previously, the metagenome also revealed sequences for gram positive and gram negative bacteriophages, as well as human adenovirus C. Together, these data reveal surprising eukaryotic and viral microbial diversity in ELBW enteric microbiota dominated bytypes of bacteria known to cause invasive disease in these infants

    Data_Sheet_1_Antibiotic resistance and host immune system-induced metal bactericidal control are key factors for microbial persistence in the developing human preterm infant gut microbiome.PDF

    No full text
    The human gut microbiome, which develops and stabilizes during the early stages of infant life, plays an essential role in host health through the production of metabolic resources and the stimulation and training of the immune system. To study colonization and community functional dynamics of the microbiota based on responses to host immune processes during the normal and dysbiotic establishment of the gut, metaproteomics was conducted on 91 fecal samples collected over the first 90 days of life from 17 hospitalized premature infants. Microbial responses to antibiotic administration and host-imposed metal bactericidal control correlated with community assembly and resiliency of microbes in the developing preterm gut. Specifically, proteins related to antibiotic resistance and metal homeostasis mechanisms were predominant in persisting members in the infant gut environment over the first several weeks of life. Overall, this metaproteomics study provides a unique approach to examine the temporal expansion and resilience of microbial colonization, as it allows simultaneous examination of both host and microbial metabolic activities. Understanding the interplay between host and microbes may elucidate the microbiome’s potential immunomodulatory roles relevant to necrotizing enterocolitis and other dysbiotic conditions in preterm infants.</p
    • …
    corecore