17 research outputs found

    Phosphorylation-Mediated Control of Stress Responses Induced by Nanosecond Pulsed Electric Fields

    Get PDF
    Exposure of living organisms to short electric pulses is widely utilized in the life sciences, for example, for DNA transfection. Recent advances in electrical engineering have enabled the production of extremely short electric pulses in the range of nanoseconds, namely, nanosecond pulsed electric fields (nsPEFs). nsPEFs are increasingly recognized as a novel means for cancer therapy, because of their ability to induce cell death. Recent studies have demonstrated that nsPEFs act as cellular stress and activate two independent signaling pathways that involve phosphorylation of translation initiation factors and lead to suppression of general protein synthesis. eIF2α phosphorylation is one of the key reactions in stress-induced translational suppression and is rapidly induced by nsPEFs. Concomitantly, PERK and GCN2, both of which are stress-responsive protein kinases, are activated in nsPEF-exposed cells. Furthermore, nsPEFs cause a reduction in 4E-BP1 phosphorylation, which is controlled by mTORC1 and constitutes an alternative mechanism for translational suppression, independent of eIF2α phosphorylation. In accordance with elevated eIF2α phosphorylation and decreased 4E-BP1 phosphorylation, general protein synthesis is acutely suppressed after nsPEF exposure. These findings demonstrate that nsPEFs induce two independent signaling pathways for translational suppression, further highlighting a unique feature of nsPEFs as a novel means for life sciences

    Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks

    Get PDF
    The DNA-dependent protein kinase catalytic subunit (DNA-PKCS) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PKCS recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus. We show that DNA-PKCS accumulates at DSB sites in a Ku80-dependent manner, and that neither the kinase activity nor the phosphorylation status of DNA-PKCS influences its initial accumulation. However, impairment of both of these functions results in deficient DSB repair and the maintained presence of DNA-PKCS at unrepaired DSBs. The use of photobleaching techniques allowed us to determine that the kinase activity and phosphorylation status of DNA-PKCS influence the stability of its binding to DNA ends. We suggest a model in which DNA-PKCS phosphorylation/autophosphorylation facilitates NHEJ by destabilizing the interaction of DNA-PKCS with the DNA ends

    RETRACTED: DNA-PKcs-PIDDosome: A Nuclear Caspase-2-Activating Complex with Role in G2/M Checkpoint Maintenance

    Get PDF
    This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).This article has been retracted at the request of the Authors.Our paper reported the identification of a nuclear protein complex comprising DNA-PKcs, PIDD, and caspase-2 and characterization of its role in G2/M checkpoint maintenance, thereby providing insight into the functional significance of nuclear caspase-2. We recently identified errors affecting several figure panels where original data were processed inappropriately such that the figure panels do not accurately report the original data. We believe that the most responsible course of action is to retract the paper. We sincerely apologize to the scientific community for any inconvenience this might cause

    Disease-associated H58Y mutation affects the nuclear dynamics of human DNA topoisomerase IIβ

    No full text
    Abstract DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems and plays critical roles in various nuclear processes. Recently, a heterozygous H58Y substitution in the ATPase domain of human TOP2B was identified from patients with autism spectrum disorder, but its biological significance remains unclear. In this study, we analyzed the nuclear dynamics of TOP2B with H58Y (TOP2B H58Y). Although wild-type TOP2B was highly mobile in the nucleus of a living cell, the nuclear mobility of TOP2B H58Y was markedly reduced, suggesting that the impact of H58Y manifests as low protein mobility. We found that TOP2B H58Y is insensitive to ICRF-187, a TOP2 inhibitor that halts TOP2 as a closed clamp on DNA. When the ATPase activity of TOP2B was compromised, the nuclear mobility of TOP2B H58Y was restored to wild-type levels, indicating the contribution of the ATPase activity to the low nuclear mobility. Analysis of genome-edited cells harboring TOP2B H58Y showed that TOP2B H58Y retains sensitivity to the TOP2 poison etoposide, implying that TOP2B H58Y can undergo at least a part of its catalytic reactions. Collectively, TOP2 H58Y represents a unique example of the relationship between a disease-associated mutation and perturbed protein dynamics
    corecore