4,739 research outputs found

    Super-diffusion versus competitive advection: a simulation

    Full text link
    Magnetic element tracking is often used to study the transport and diffusion of the magnetic field on the solar photosphere. From the analysis of the displacement spectrum of these tracers, it has been recently agreed that a regime of super-diffusivity dominates the solar surface. Quite habitually this result is discussed in the framework of fully developed turbulence. But the debate whether the super-diffusivity is generated by a turbulent dispersion process, by the advection due to the convective pattern, or by even another process, is still open, as is the question about the amount of diffusivity at the scales relevant to the local dynamo process. To understand how such peculiar diffusion in the solar atmosphere takes places, we compared the results from two different data-sets (ground-based and space-borne) and developed a simulation of passive tracers advection by the deformation of a Voronoi network. The displacement spectra of the magnetic elements obtained by the data-sets are consistent in retrieving a super-diffusive regime for the solar photosphere, but the simulation also shows a super-diffusive displacement spectrum: its competitive advection process can reproduce the signature of super-diffusion. Therefore, it is not necessary to hypothesize a totally developed turbulence regime to explain the motion of the magnetic elements on the solar surface

    Understanding low energy reaction with exotic nuclei

    Full text link
    Recent developments on the understanding of low energy reactions are highlighted. Emphasis is given to the CDCC framework where the breakup channels of the projectile are included explicitly. Properties of the breakup couplings are presented. Comments are given with regard to the separation between the nuclear and the Coulomb contributions to breakup cross sections as well as the dependence on the optical potentials. A discussion on the sensitivity of the CDCC basis is discussed, by comparing pure breakup results with transfer to the continuum calculations. Finally, some remaining controversies show the need to go beyond the single particle picture for the projectile.Comment: Proceedings from 'Nuclei at the limits', ANL 26-30 July 2004, 6 pages and 8 figure

    Chromospheric heating by acoustic waves compared to radiative cooling

    Full text link
    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric magnetic field strength between 300 G and 1300 G and inclination of 20-60 degrees, the contribution increases from 23 % (chromospheric network) to 54 % (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.Comment: 9 pages, 10 figures. Accepted for publication in The Astrophysical Journa

    Dynamics of the solar atmosphere above a pore with a light bridge

    Full text link
    Context: Solar pores are small sunspots lacking a penumbra that have a prevailing vertical magnetic field component. They can include light bridges at places with locally reduced magnetic field. Like sunspots, they exhibit a wide range of oscillatory phenomena. Aims: A large isolated pore with a light bridge (NOAA 11005) is studied to obtain characteristics of a chromospheric filamentary structure around the pore, to analyse oscillations and waves in and around the pore, and to understand the structure and brightness of the light bridge. Methods: Spectral imaging observations in the line Ca II 854.2 nm and complementary spectropolarimetry in Fe I lines, obtained with the DST/IBIS spectrometer and HINODE/SOT spectropolarimeter, were used to measure photospheric and chromospheric velocity fields, oscillations, waves, the magnetic field in the photosphere, and acoustic energy flux and radiative losses in the chromosphere. Results: The chromospheric filamentary structure around the pore has all important characteristics of a superpenumbra: it shows an inverse Evershed effect and running waves, and has a similar morphology and oscillation character. The granular structure of the light bridge in the upper photosphere can be explained by radiative heating. Acoustic waves leaking up from the photosphere along the inclined magnetic field in the light bridge transfer enough energy flux to balance the total radiative losses of the light-bridge chromosphere. Conclusions: The presence of a penumbra is not a necessary condition for the formation of a superpenumbra. The light bridge is heated by radiation in the photosphere and by acoustic waves in the chromosphere.Comment: 14 pages, 14 figures, 3 tables, accepted for publication in Astrononomy & Astrophysic

    Occurrence and persistence of magnetic elements in the quiet Sun

    Full text link
    Turbulent convection efficiently transports energy up to the solar photosphere, but its multi-scale nature and dynamic properties are still not fully understood. Several works in the literature have investigated the emergence of patterns of convective and magnetic nature in the quiet Sun at spatial and temporal scales from granular to global. Aims. To shed light on the scales of organisation at which turbulent convection operates, and its relationship with the magnetic flux therein, we studied characteristic spatial and temporal scales of magnetic features in the quiet Sun. Methods. Thanks to an unprecedented data set entirely enclosing a supergranule, occurrence and persistence analysis of magnetogram time series were used to detect spatial and long-lived temporal correlations in the quiet Sun and to investigate their nature. Results. A relation between occurrence and persistence representative for the quiet Sun was found. In particular, highly recurrent and persistent patterns were detected especially in the boundary of the supergranular cell. These are due to moving magnetic elements undergoing motion that behaves like a random walk together with longer decorrelations (2\sim2 h) with respect to regions inside the supergranule. In the vertices of the supegranular cell the maximum observed occurrence is not associated with the maximum persistence, suggesting that there are different dynamic regimes affecting the magnetic elements

    El Coeficiente de Pulimento Acelerado y su relación con parámetros petrográficos (contraste de dureza y composición modal) y la microrrugosidad superficial de áridos naturales y artificiales

    Get PDF
    The goal of this work was first to establish the relationships between the PSV values and the microstructural and mineralogical features of the aggregates and surface micro-roughness, and then to establish the behavioural differences between natural and artificial aggregates. The results obtained indicate that the surface micro-roughness and the different PSV values of the natural aggregates are strongly governed by the existence of minerals with different degrees of hardness, together with the proportion of these minerals. In contrast, the different degree of porosity in artificial aggregates (a furnace slag) was seen to be responsible for its high surface micro-roughness and PSV values. Finally, the PSV and a petrographic parameter (Overall Hardness Contrast, ΔH) were seen to be related by an exponential curve (PSV=39.726ΔH0.057) with an extremely good fit, providing a good tool to estimate PSVs in natural and artificial aggregates from petrographic parameters.El objetivo de este trabajo es establecer, por un lado, las relaciones existentes del CPA con las características petrográficas de los áridos, así como su microrrugosidad superficial y, por otro, las diferencias de comportamiento entre áridos naturales y artificiales. Los resultados indican que en los áridos naturales la microrrugosidad superficial y el diferente valor del CPA están determinados, en gran medida, por las diferencias de dureza de sus minerales y también por la proporción en la que estos minerales se encuentran en las distintas litologías. Sin embargo, en los áridos artificiales (escorias de fundición) su elevada porosidad es la responsable de su marcada microrrugosidad superficial y su elevado valor del CPA. Finalmente, se relaciona el CPA con un parámetro petrográfico (Contraste de Dureza Global, ΔH) mediante una curva exponencial, cuyo excelente índice de regresión hace que sea factible estimar mediante el estudio petrográfico de un árido su valor del CPA (CPA=39,726ΔH0,057)

    Pair separation of magnetic elements in the quiet Sun

    Get PDF
    The dynamic properties of the quiet Sun photosphere can be investigated by analyzing the pair dispersion of small-scale magnetic fields (i.e., magnetic elements). By using 2525 hr-long Hinode magnetograms at high spatial resolution (0".30".3), we tracked 68,49068,490 magnetic element pairs within a supergranular cell near the disk center. The computed pair separation spectrum, calculated on the whole set of particle pairs independently of their initial separation, points out what is known as a super-diffusive regime with spectral index γ=1.55±0.05\gamma=1.55\pm0.05, in agreement with the most recent literature, but extended to unprecedented spatial and temporal scales (from granular to supergranular). Furthermore, for the first time, we investigated here the spectrum of the mean square displacement of pairs of magnetic elements, depending on their initial separation r0r_0. We found that there is a typical initial distance above (below) which the pair separation is faster (slower) than the average. A possible physical interpretation of such a typical spatial scale is also provided

    The ambitions and challenges of SROI.

    Get PDF
    With the growing interest in measuring the social impact of third sector activities, there have been a range of approaches developed. One of these, social return on investment (SROI) has received particular attention and is being promoted by third sector organisations, as well as public and private bodies. This paper examines this approach in detail and identifies a series of issues that require further investigation. These include technical and methodological issues related to this adjusted cost-benefit analysis such as quantifying the value of social benefits, and attribution; the judgement involved in setting indicators; whether projects deemed successful based on an SROI analysis can provide the basis for replicability and scaling up; and the ways in which SROI is being used by stakeholders. Through examining these challenges in detail, the approaches to measuring social impact can be strengthened, standardised and made more rigorous. While the issues raised here are essential to developing SROI further, they are also valid for more general discussions regarding the proving and improving of the value added by the UK third sector

    Modelling a Coupled Thermoelectromechanical Behaviour of Contact Elements via Fractal Surfaces

    Get PDF
    A three-dimensional coupled thermoelectromechanical model for electrical connectors is here proposed to evaluate local stress and temperature distributions around the contact area of electric connectors under different applied loads. A micromechanical numerical model has been developed by merging together the contact theory approach, which makes use of the so-called roughness parameters obtained from experimental measurements on real contact surfaces, with the topology description of the rough surface via the theory of fractal geometry. Particularly, the variation of asperities has been evaluated via the Weierstrass-Mandelbrot function. In this way the micromechanical model allowed for an upgraded contact algorithm in terms of effective contact area and thermal and electrical contact conductivities. Such an algorithm is subsequently implemented to construct a global model for performing transient thermoelectromechanical analyses without the need of simulating roughness asperities of contact surfaces, so reducing the computational cost. A comparison between numerical and analytical results shows that the adopted procedure is suitable to simulate the transient thermoelectromechanical response of electric connectors
    corecore