221 research outputs found

    Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the Two-Photon Exchange Amplitude

    Full text link
    We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A_\perp, at two Q2^2 values of \qsquaredaveragedlow (GeV/c)2^2 and \qsquaredaveragedhighII (GeV/c)2^2 and a scattering angle of 30<θe<4030^\circ < \theta_e < 40^\circ. The measured transverse asymmetries are A_{\perp}(Q2^2 = \qsquaredaveragedlow (GeV/c)2^2) = (\experimentalasymmetry alulowcorr ±\pm \statisticalerrorlowstat_{\rm stat} ±\pm \combinedsyspolerrorlowalucorsys_{\rm sys}) ×\times 106^{-6} and A_{\perp}(Q2^2 = \qsquaredaveragedhighII (GeV/c)2^2) = (\experimentalasymme tryaluhighcorr ±\pm \statisticalerrorhighstat_{\rm stat} ±\pm \combinedsyspolerrorhighalucorsys_{\rm sys}) ×\times 106^{-6}. The first errors denotes the statistical error and the second the systematic uncertainties. A_\perp arises from the imaginary part of the two-photon exchange amplitude and is zero in the one-photon exchange approximation. From comparison with theoretical estimates of A_\perp we conclude that π\piN-intermediate states give a substantial contribution to the imaginary part of the two-photon amplitude. The contribution from the ground state proton to the imaginary part of the two-photon exchange can be neglected. There is no obvious reason why this should be different for the real part of the two-photon amplitude, which enters into the radiative corrections for the Rosenbluth separation measurements of the electric form factor of the proton.Comment: 4 figures, submitted to PRL on Oct.

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30<θe<40^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(ep)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 106^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 106^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(6.30+0.43)106A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    A simple corneal perfusion chamber for drug penetration and toxicity studies

    Get PDF
    AIMS: Corneal perfusion chambers are important tools in the development and assessment of ophthalmic drugs. The aim of this study was to design and test a modified perfusion chamber suitable for topical application of drugs to isolated corneoscleral preparations, and which allowed continuous monitoring of endothelial cell function. METHODS: A polycarbonate and stainless steel perfusion chamber was designed to clamp corneas in a horizontal plane suitable for topical drug delivery. Endothelial cell function was assessed by ultrasonic pachymetry and specular microscopy during perfusion. Epithelial barrier function was assessed by penetration of fluorescein. Leakage was examined by measuring penetration of a large protein, IgG. Tissue architecture after perfusion was examined by conventional histology. RESULTS: Corneas maintained a functionally and morphologically intact endothelial monolayer during perfusion periods of up to 14 hours. The epithelial barrier function was well preserved. The tissue clamp sealed the preparation effectively against leakage of macromolecules. CONCLUSION: The new chamber device forms a reliable tool for in vitro drug penetration and toxicity studies in isolated perfused corneoscleral tissue

    WAVOS: a MATLAB toolkit for wavelet analysis and visualization of oscillatory systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wavelets have proven to be a powerful technique for the analysis of periodic data, such as those that arise in the analysis of circadian oscillators. While many implementations of both continuous and discrete wavelet transforms are available, we are aware of no software that has been designed with the nontechnical end-user in mind. By developing a toolkit that makes these analyses accessible to end users without significant programming experience, we hope to promote the more widespread use of wavelet analysis.</p> <p>Findings</p> <p>We have developed the WAVOS toolkit for wavelet analysis and visualization of oscillatory systems. WAVOS features both the continuous (Morlet) and discrete (Daubechies) wavelet transforms, with a simple, user-friendly graphical user interface within MATLAB. The interface allows for data to be imported from a number of standard file formats, visualized, processed and analyzed, and exported without use of the command line. Our work has been motivated by the challenges of circadian data, thus default settings appropriate to the analysis of such data have been pre-selected in order to minimize the need for fine-tuning. The toolkit is flexible enough to deal with a wide range of oscillatory signals, however, and may be used in more general contexts.</p> <p>Conclusions</p> <p>We have presented WAVOS: a comprehensive wavelet-based MATLAB toolkit that allows for easy visualization, exploration, and analysis of oscillatory data. WAVOS includes both the Morlet continuous wavelet transform and the Daubechies discrete wavelet transform. We have illustrated the use of WAVOS, and demonstrated its utility for the analysis of circadian data on both bioluminesence and wheel-running data. WAVOS is freely available at <url>http://sourceforge.net/projects/wavos/files/</url></p

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.Comment: 5 pages, 2 figure

    Novel approach to analysing large data sets of personal sun exposure measurements

    Get PDF
    Personal sun exposure measurements provide important information to guide the development of sun awareness and disease prevention campaigns. We assess the scaling properties of personal ultraviolet radiation (pUVR) sun exposure measurements using the wavelet transform (WT) spectral analysis to process long-range, high-frequency personal recordings collected by electronic UVR dosimeters designed to measure erythemal UVR exposure. We analysed the sun exposure recordings of school children, farmers, marathon runners and outdoor workers in South Africa, and construction workers and work site supervisors in New Zealand. We found scaling behaviour in all the analysed pUVR data sets. We found that the observed scaling changes from uncorrelated to long-range correlated with increasing duration of sun exposure. Peaks in the WT spectra that we found suggest the existence of characteristic times in sun exposure behaviour that were to some extent universal across our data set. Our study also showed that WT measures enable group classification, as well as distinction between individual UVR exposures, otherwise unattainable by conventional statistical methods

    Clonal Characterization of Rat Muscle Satellite Cells: Proliferation, Metabolism and Differentiation Define an Intrinsic Heterogeneity

    Get PDF
    Satellite cells (SCs) represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB) muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC) present in major proportion (∼75%) and the high proliferative clones (HPC), present instead in minor amount (∼25%). LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (ΔΨm), ATP balance and Reactive Oxygen Species (ROS) generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described
    corecore