109 research outputs found

    A Genome-Wide Association Study of Nephrolithiasis in the Japanese Population Identifies Novel Susceptible Loci at 5q35.3, 7p14.3, and 13q14.1

    Get PDF
    Nephrolithiasis is a common nephrologic disorder with complex etiology. To identify the genetic factor(s) for nephrolithiasis, we conducted a three-stage genome-wide association study (GWAS) using a total of 5,892 nephrolithiasis cases and 17,809 controls of Japanese origin. Here we found three novel loci for nephrolithiasis: RGS14-SLC34A1-PFN3-F12 on 5q35.3 (rs11746443; Pβ€Š=β€Š8.51Γ—10βˆ’12, odds ratio (OR)β€Š=β€Š1.19), INMT-FAM188B-AQP1 on 7p14.3 (rs1000597; Pβ€Š=β€Š2.16Γ—10βˆ’14, ORβ€Š=β€Š1.22), and DGKH on 13q14.1 (rs4142110; Pβ€Š=β€Š4.62Γ—10βˆ’9, ORβ€Š=β€Š1.14). Subsequent analyses in 21,842 Japanese subjects revealed the association of SNP rs11746443 with the reduction of estimated glomerular filtration rate (eGFR) (Pβ€Š=β€Š6.54Γ—10βˆ’8), suggesting a crucial role for this variation in renal function. Our findings elucidated the significance of genetic variations for the pathogenesis of nephrolithiasis

    Gentamicin sulphate permeation through porcine intestinal epithelial cell monolayer

    Get PDF
    Gentamicin is an aminoglycoside antibiotic widely used in combination with dimethyl sulphoxide (DMSO) in topical drug formulations. It is not known, however, whether DMSO can enhance the permeation of gentamicin through biological membranes, leading to oto- and nephrotoxic side effects. A simple and reliable high-performance liquid chromatographic (HPLC) method was applied for the quantitative determination of gentamicin collected from the apical and basolateral compartments of the porcine intestinal epithelial cell line IPEC-J2 cell monolayer using fluorometric derivatisation of the analyte with fluorenylmethyloxycarbonyl chloride (FMOC) prior to chromatographic run in the presence and absence of 1% DMSO. The lack of change in transepithelial electrical resistance (TER) demonstrated that gentamicin and 1% DMSO did not affect IPEC-J2 cell monolayer integrity via the disruption of cell membranes. Chromatographic data also ascertained that gentamicin penetration across the cell monolayer even in the presence of 1% DMSO was negligible at 6 h after the beginning of apical gentamicin administration. This study further indicates that the addition of this organic solvent does not increase the incidence of toxic effects related to gentamicin permeation

    A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice

    Get PDF
    Many genetic liver diseases present in newborns with repeated, often lethal, metabolic crises. Gene therapy using non-integrating viruses such as AAV is not optimal in this setting because the non-integrating genome is lost as developing hepatocytes proliferate1,2. We reasoned that newborn liver may be an ideal setting for AAV-mediated gene correction using CRISPR/Cas9. Here we intravenously infuse two AAVs, one expressing Cas9 and the other expressing a guide RNA and the donor DNA, into newborn mice with a partial deficiency in the urea cycle disorder enzyme, ornithine transcarbamylase (OTC). This resulted in reversion of the mutation in 10% (6.7% – 20.1%) of hepatocytes and increased survival in mice challenged with a high-protein diet, which exacerbates disease. Gene correction in adult OTC-deficient mice was lower and accompanied by larger deletions that ablated residual expression from the endogenous OTC gene, leading to diminished protein tolerance and lethal hyperammonemia on a chow diet

    Essential Roles for Soluble Virion-Associated Heparan Sulfonated Proteoglycans and Growth Factors in Human Papillomavirus Infections

    Get PDF
    A subset of human papillomavirus (HPV) infections is causally related to the development of human epithelial tumors and cancers. Like a number of pathogens, HPV entry into target cells is initiated by first binding to heparan sulfonated proteoglycan (HSPG) cell surface attachment factors. The virus must then move to distinct secondary receptors, which are responsible for particle internalization. Despite intensive investigation, the mechanism of HPV movement to and the nature of the secondary receptors have been unclear. We report that HPV16 particles are not liberated from bound HSPG attachment factors by dissociation, but rather are released by a process previously unreported for pathogen-host cell interactions. Virus particles reside in infectious soluble high molecular weight complexes with HSPG, including syndecan-1 and bioactive compounds, like growth factors. Matrix mellatoproteinase inhibitors that block HSPG and virus release from cells interfere with virus infection. Employing a co-culture assay, we demonstrate HPV associated with soluble HSPG-growth factor complexes can infect cells lacking HSPG. Interaction of HPV-HSPG-growth factor complexes with growth factor receptors leads to rapid activation of signaling pathways important for infection, whereas a variety of growth factor receptor inhibitors impede virus-induced signaling and infection. Depletion of syndecan-1 or epidermal growth factor and removal of serum factors reduce infection, while replenishment of growth factors restores infection. Our findings support an infection model whereby HPV usurps normal host mechanisms for presenting growth factors to cells via soluble HSPG complexes as a novel method for interacting with entry receptors independent of direct virus-cell receptor interactions

    A second generation human haplotype map of over 3.1 million SNPs

    Full text link
    We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r(2) of between 0.9 and 0.96 depending on population. We demonstrate that the current generation of commercial genome-wide genotyping products captures common Phase II SNPs with an average maximum r(2) of up to 0.8 in African and up to 0.95 in non-African populations, and that potential gains in power in association studies can be obtained through imputation. These data also reveal novel aspects of the structure of linkage disequilibrium. We show that 10-30% of pairs of individuals within a population share at least one region of extended genetic identity arising from recent ancestry and that up to 1% of all common variants are untaggable, primarily because they lie within recombination hotspots. We show that recombination rates vary systematically around genes and between genes of different function. Finally, we demonstrate increased differentiation at non-synonymous, compared to synonymous, SNPs, resulting from systematic differences in the strength or efficacy of natural selection between populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62863/1/nature06258.pd

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson's disease (PD) and Alzheimer's disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased AΞ²42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)

    Get PDF
    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described
    • …
    corecore