36 research outputs found

    Nuclear factor I-A represses expression of the cell adhesion molecule L1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression.</p> <p>Results</p> <p>We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse <it>L1 </it>gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction <it>in vivo </it>using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold.</p> <p>Conclusion</p> <p>Our findings suggest that NFI-A, in particular its brain-specific isoform, represses <it>L1 </it>gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF).</p

    Yersinia Virulence Factor YopM Induces Sustained RSK Activation by Interfering with Dephosphorylation

    Get PDF
    Background: Pathogenic yersiniae inject several effector proteins (Yops) into host cells, which subverts immune functions and enables the bacteria to survive within the host organism. YopM, whose deletion in enteropathogenic yersiniae results in a dramatic loss of virulence, has previously been shown to form a complex with and activate the multifunctional kinases PKN2 and RSK1 in transfected cells. Methodology/Principal Findings: In a near physiological approach with double-affinity-tagged YopM being translocated into the macrophage cell line J774A.1 via the natural type three secretion system of Yersinia we verified the interaction of YopM with PKN2 and RSK1 and detected association with additional PKN and RSK isoforms. In transfected and infected cells YopM induced sustained phosphorylation of RSK at its activation sites serine-380 and serine-221 even in the absence of signalling from its upstream kinase ERK1/2, suggesting inhibition of dephosphorylation. ATP-depletion and in vitro assays using purified components directly confirmed that YopM shields RSK isoforms from phosphatase activity towards serines 380 and 221. Conclusions/Significance: Our study suggests that during Yersinia infection YopM induces sustained activation of RSK by blocking dephosphorylation of its activatory phosphorylation sites. This may represent a novel mode of action of a bacterial virulence factor

    Open-source genomic analysis of Shiga-toxin–producing E. coli O104:H4

    Get PDF
    An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance

    Advances in rapid identification and susceptibility testing of bacteria in the clinical microbiology laboratory: implications for patient care and antimicrobial stewardship programs

    No full text
    Early availability of information on bacterial pathogens and their antimicrobial susceptibility is of key importance for the management of infectious diseases patients. Currently, using traditional approaches, it usually takes at least 48 hours for identification and susceptibility testing of bacterial pathogens. Therefore, the slowness of diagnostic procedures drives prolongation of empiric, potentially inappropriate, antibacterial therapies. Over the last couple of years, the improvement of available techniques (e.g. for susceptibility testing, DNA amplification assays), and introduction of novel technologies (e.g. MALDI-TOF) has fundamentally changed approaches towards pathogen identification and characterization. Importantly, these techniques offer increased diagnostic resolution while at the same time shorten the time-to-result, and are thus of obvious importance for antimicrobial stewardship. In this review, we will discuss recent advances in medical microbiology with special emphasis on the impact of novel techniques on antimicrobial stewardship programs

    Serogroup-Related Escape of Yersinia enterocolitica YopE from Degradation by the Ubiquitin-Proteasome Pathwayâ–¿

    No full text
    Pathogenic Yersinia spp. employ a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell to modify the host immune response. One strategy of the infected host cell to resist the bacterial attack is degradation and inactivation of injected bacterial virulence proteins through the ubiquitin-proteasome pathway. The cytotoxin YopE is a known target protein of this major proteolytic system in eukaryotic cells. Here, we investigated the sensitivity of YopE belonging to different enteropathogenic Yersinia enterocolitica serogroups to ubiquitination and proteasomal degradation. Analysis of the YopE protein levels in proteasome inhibitor-treated versus untreated cells revealed that YopE from the highly pathogenic Y. enterocolitica serotype O8 was subjected to proteasomal destabilization, whereas the YopE isotypes from serogroups O3 and O9 evaded degradation. Accumulation of YopE from serotypes O3 and O9 was accompanied by an enhanced cytotoxic effect. Using Yersinia strains that specifically produced YopE from either Y. enterocolitica O8 or O9, we found that only the YopE protein from serogroup O8 was modified by polyubiquitination, although both YopE isotypes were highly homologous. We determined two unique N-terminal lysines (K62 and K75) in serogroup O8 YopE, not present in serogroup O9 YopE, that served as polyubiquitin acceptor sites. Insertion of either lysine in serotype O9 YopE enabled its ubiquitination and destabilization. These results define a serotype-dependent difference in the stability and activity of the Yersinia effector protein YopE that could influence Y. enterocolitica pathogenesis

    Mice with a Targeted Disruption of the Cl(−)/HCO(3)(−) Exchanger AE3 Display a Reduced Seizure Threshold

    No full text
    Neuronal activity results in significant pH shifts in neurons, glia, and interstitial space. Several transport mechanisms are involved in the fine-tuning and regulation of extra- and intracellular pH. The sodium-independent electroneutral anion exchangers (AEs) exchange intracellular bicarbonate for extracellular chloride and thereby lower the intracellular pH. Recently, a significant association was found with the variant Ala867Asp of the anion exchanger AE3, which is predominantly expressed in brain and heart, in a large cohort of patients with idiopathic generalized epilepsy. To analyze a possible involvement of AE3 dysfunction in the pathogenesis of seizures, we generated an AE3-knockout mouse model by targeted disruption of Slc4a3. AE3-knockout mice were apparently healthy, and neither displayed gross histological and behavioral abnormalities nor spontaneous seizures or spike wave complexes in electrocorticograms. However, the seizure threshold of AE3-knockout mice exposed to bicuculline, pentylenetetrazole, or pilocarpine was reduced, and seizure-induced mortality was significantly increased compared to wild-type littermates. In the pyramidal cell layer of the hippocampal CA3 region, where AE3 is strongly expressed, disruption of AE3 abolished sodium-independent chloride-bicarbonate exchange. These findings strongly support the hypothesis that AE3 modulates seizure susceptibility and, therefore, are of significance for understanding the role of intracellular pH in epilepsy

    First case of bloodstream infection caused by Mixta hanseatica sp. nov., a novel species within the Mixta genus of the Erwiniaceae family

    No full text
    Members of the Erwiniaceae family very rarely cause infections in humans. Here we describe the first case of a bloodstream infection due to Mixta hanseatica sp. nov., a novel member of the Erwiniaceae family
    corecore