22 research outputs found

    Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla CTX-M-15 at a German University-Hospital

    Get PDF
    Background: Multi-drug resistant Klebsiella pneumoniae strains are a common cause of health care associated infections worldwide. Clonal spread of Klebsiella pneumoniae isolates carrying plasmid mediated CTX-M-15 have been commonly reported. Limited data is available regarding dissemination of chromosomally encoded CTX-M-15 in Klebsiella pneumoniae worldwide. Results: We examined 23 non-repetitive ESBL-producing Klebsiella pneumoniae strains isolated from clinical specimens over a period of 4 months in a German University Hospital. All isolates were characterized to determine their genetic relatedness using Pulsed-Field Gel Electrophoresis (PFGE) and Multi Locus Sequence Typing (MLST). PFGE revealed three clusters (B1, B2, and B3) with a sub-cluster (A3) comprising of 10 isolates with an identical PFGE pattern. All strains of the cluster B3 with similar PFGE patterns were typed as ST101, indicating an outbreak situation. The ESBL allele bla CTX-M-15 was identified in 16 (69.6 %) of all isolates, including all of the outbreak strains. Within the A3 sub-cluster, the CTX-M-15 allele could not be transferred by conjugation. DNA hybridization studies suggested a chromosomal location of bla CTX-M-15. Whole genome sequencing located CTX-M-15 within a complete ISEcp-1 transposition unit inserted into an ORF encoding for a putative membrane protein. PCR-based analysis of the flanking regions demonstrated that insertion into this region is unique and present in all outbreak isolates. Conclusion: This is the first characterization of a chromosomal insertion of bla CTX-M-15 in Klebsiella pneumonia ST101, a finding suggesting that in Enterobacteriaceae, chromosomal locations may also act as reservoirs for the spread of bla CTX-M-15 encoding transposition units

    The Mitochondrial Genomes of the Zoonotic Canine Filarial Parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) Honkongensis Provide Evidence for Presence of Cryptic Species

    Get PDF
    Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLU-MINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus p hylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. 'Thailand II', or a quite divergent population of C. D. hongkongensis

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    blaCTX-M-27–Encoding Escherichia coli Sequence Type 131 Lineage C1-M27 Clone in Clinical Isolates, Germany

    No full text
    We examined extended-spectrum β-lactamase–producing isolates from livestock, humans, companion animals, food, and the environment during 2009–2016 in Germany for the presence of CTX-M-27 allele within Escherichia coli sequence type (ST) 131. E. coli ST131 C1-M27 was exclusively present in humans; its incidence increased from 0% in 2009 to 45% in 2016

    ASA3P: An automatic and scalable pipeline for the assembly, annotation and higher-level analysis of closely related bacterial isolates.

    No full text
    Whole genome sequencing of bacteria has become daily routine in many fields. Advances in DNA sequencing technologies and continuously dropping costs have resulted in a tremendous increase in the amounts of available sequence data. However, comprehensive in-depth analysis of the resulting data remains an arduous and time-consuming task. In order to keep pace with these promising but challenging developments and to transform raw data into valuable information, standardized analyses and scalable software tools are needed. Here, we introduce ASA3P, a fully automatic, locally executable and scalable assembly, annotation and analysis pipeline for bacterial genomes. The pipeline automatically executes necessary data processing steps, i.e. quality clipping and assembly of raw sequencing reads, scaffolding of contigs and annotation of the resulting genome sequences. Furthermore, ASA3P conducts comprehensive genome characterizations and analyses, e.g. taxonomic classification, detection of antibiotic resistance genes and identification of virulence factors. All results are presented via an HTML5 user interface providing aggregated information, interactive visualizations and access to intermediate results in standard bioinformatics file formats. We distribute ASA3P in two versions: a locally executable Docker container for small-to-medium-scale projects and an OpenStack based cloud computing version able to automatically create and manage self-scaling compute clusters. Thus, automatic and standardized analysis of hundreds of bacterial genomes becomes feasible within hours. The software and further information is available at: asap.computational.bio

    The microbiome landscape in pediatric Crohn’s disease and therapeutic implications

    No full text
    ABSTRACTDysbiosis of the gut microbiome and a pathological immune response in intestinal tissues form the basis of Crohn’s disease (CD), which is a debilitating disease with relevant morbidity and mortality. It is increasing in childhood and adolescents, due to western life-style and nutrition and a large set of predisposing genetic factors. Crohn’s disease-associated genetic mutations play an essential role in killing pathogens, altering mucosal barrier function, and protecting the host microbiome, suggesting an important pathogenic link. The intestinal microbiome is highly variable and can be influenced by environmental factors. Changes in microbial composition and a reduction in species diversity have been shown to be central features of disease progression and are therefore the target of therapeutic approaches. In this review, we summarize the current literature on the role of the gut microbiome in childhood, adolescent, and adult CD, current therapeutic options, and their impact on the microbiome

    Resistance plasmids in ESBL-encoding Escherichia coli isolates from humans, dogs and cats

    No full text
    We characterized ESBL-producing Escherichia coli isolates from diseased dog, cat and human sources for their plasmid content. Plasmids with different Inc groups and combinations of resistance genes were detected in these isolates. The pan-genome of the plasmid-associated genes was found to be large, indicating diversity of the gene pool among the plasmids. No commonly occurring plasmids with similar gene content in isolates from dog, cats and humans were detected

    bla

    No full text

    Diffuse Unilateral Subacute Neuroretinitis Caused by Ancylostoma Hookworm

    No full text
    Diffuse unilateral subacute neuroretinitis is an ocular infectious disease caused by several distinct nematodes. Definite identification of the involved nematodes is rarely achieved. We report on the molecular-based genetic identification of an Ancylostoma ceylanicum hookworm implicated in a case of diffuse unilateral subacute neuroretinitis in a child
    corecore