104 research outputs found

    Tbx2 and Tbx3 Regulate the Dynamics of Cell Proliferation during Heart Remodeling

    Get PDF
    BACKGROUND: The heart forms from a linear tube that is subject to complex remodeling during embryonic development. Hallmarks of this remodeling are the looping of the heart tube and the regionalization into chamber and non-chamber myocardium. Cardiomyocytes in the future chamber myocardium acquire different cellular and physiological characteristics through activation of a chamber-specific genetic program, which is in part mediated by T-box genes. METHODOLOGY/PRINCIPAL FINDING: We characterize two new zebrafish T-box transcription factors, tbx3b and tbx2a, and analyze their role during the development of the atrioventricular canal. Loss- and gain-of-function analyses demonstrate that tbx3b and tbx2a are necessary to repress the chamber-genetic program in the non-chamber myocardium. We also show that tbx3b and tbx2a are required to control cell proliferation in the atrioventricular canal and that misregulation of cell proliferation in the heart tube influences looping. Furthermore, we characterize the heart phenotype of a novel Tbx3 mutation in mice and show that both the control of cell proliferation and the repression of chamber-specific genetic program in the non-chamber myocardium are conserved roles of Tbx3 in this species. CONCLUSIONS/SIGNIFICANCE: Taken together, our results uncover an evolutionarily conserved role of Tbx2/3 transcription factors during remodeling of the heart myocardium and highlight the importance of controlling cell proliferation as a driving force of morphogenesis

    Seroepidemiological evidence of severe fever with thrombocytopenia syndrome virus infections in wild boars in Nagasaki, Japan

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease in East Asia. It is thought that the SFTS virus (SFTSV) circulates between ticks and animals in nature and that the virus is transmitted to humans by tick bites. SFTS is endemic to Nagasaki in western Japan; however, epidemiological information regarding SFTSV in Nagasaki is not known. In this study, we performed SFTSV IgG ELISAs and neutralization antibody assays for a seroepidemiological survey using samples from wild boars captured in six areas of Nagasaki. SFTSV seropositive animals were found in three areas. Our findings provide epidemiological information on the distribution of SFTSV in Nagasaki

    Feasibility study of immediate pharyngeal cooling initiation in cardiac arrest patients after arrival at the emergency room

    Get PDF
    AIM: Cooling the pharynx and upper oesophagus would be more advantageous for rapid induction of therapeutic hypothermia since the carotid arteries run in their vicinity. The aim of this study was to determine the effects of pharyngeal cooling on brain temperature and the safety and feasibility for patients under resuscitation. METHODS: Witnessed non-traumatic cardiac arrest patients (n=108) were randomized to receive standard care with (n=53) or without pharyngeal cooling (n=55). In the emergency room, pharyngeal cooling was initiated before or shortly after return of spontaneous circulation by perfusing physiological saline (5 °C) into a pharyngeal cuff for 120 min. RESULTS: There was a significant decrease in tympanic temperature at 40 min after arrival (P=0.02) with a maximum difference between the groups at 120 min (32.9 ± 1.2°C, pharyngeal cooling group vs. 34.1 ± 1.3°C, control group; P<0.001). The return of spontaneous circulation (70% vs. 65%, P=0.63) and rearrest (38% vs. 47%, P=0.45) rates were not significantly different based on the initiation of pharyngeal cooling. No post-treatment mechanical or cold-related injury was observed on the pharyngeal epithelium by macroscopic observation. The thrombocytopaenia incidence was lower in the pharyngeal cooling group (P=0.001) during the 3-day period after arrival. The cumulative survival rate at 1 month was not significantly different between the two groups. CONCLUSIONS: Initiation of pharyngeal cooling before or immediately after the return of spontaneous circulation is safe and feasible. Pharyngeal cooling can rapidly decrease tympanic temperature without adverse effects on circulation or the pharyngeal epithelium

    Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics

    Get PDF
    Cysteine hydropersulfide (CysSSH) occurs in abundant quantities in various organisms, yet little is known about its biosynthesis and physiological functions. Extensive persulfide formation is apparent in cysteine-containing proteins in Escherichia coli and mammalian cells and is believed to result from post-translational processes involving hydrogen sulfide-related chemistry. Here we demonstrate effective CysSSH synthesis from the substrate l-cysteine, a reaction catalyzed by prokaryotic and mammalian cysteinyl-tRNA synthetases (CARSs). Targeted disruption of the genes encoding mitochondrial CARSs in mice and human cells shows that CARSs have a crucial role in endogenous CysSSH production and suggests that these enzymes serve as the principal cysteine persulfide synthases in vivo. CARSs also catalyze co-translational cysteine polysulfidation and are involved in the regulation of mitochondrial biogenesis and bioenergetics. Investigating CARS-dependent persulfide production may thus clarify aberrant redox signaling in physiological and pathophysiological conditions, and suggest therapeutic targets based on oxidative stress and mitochondrial dysfunction

    Identification of novel antiviral of fungus-derived brefeldin A against dengue viruses

    Get PDF
    Microbial natural products possess a wide range of biological and biochemical potential. Among them, fungal secondary metabolites are one of the most important sources for discovering new drugs or lead compounds. In the present study, we explored substances produced by the strain Penicillium sp. FKI-7127 for its antiviral activity. We identified brefeldin A as a novel antiviral agent against dengue viruses. The inhibitory effect of brefeldin A was confirmed by virus titer and immunofluorescence assay. Brefeldin A inhibited dengue viruses regardless of serotypes and other related viruses including Zika virus and Japanese encephalitis virus. Time-of-addition study showed that brefeldin A exerts its antiviral effect at an early stage of the dengue virus (DENV) life cycle. These studies demonstrate that (i) brefeldin A could be used as a lead compound for drug development of anti-DENV and other related viruses and (ii) fungal metabolites are a potential and valuable source for dengue virus drug discovery

    Sulfide Catabolism Ameliorates Hypoxic Brain Injury

    Get PDF
    The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain’s sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury
    corecore