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Abstract 

Keap1 is a negative regulator of Nrf2, a master transcription factor that regulates 

cytoprotection against oxidative and electrophilic stresses. Although several studies 

have suggested that the Keap1-Nrf2 system contributes to bone formation besides the 

maintenance of redox homeostasis, how Nrf2 hyperactivation by Keap1-deficiency 

affects the bone formation remains to be explored, as the Keap1-null mice are juvenile 

lethal. To overcome this problem, we utilized viable Keap1-deficient mice that we have 

generated by deleting the esophageal Nrf2 in Keap1-null mice (NEKO mice). We found 

that the NEKO mice exhibit small body size and low bone density. Although 

nephrogenic diabetes insipidus has been observed in both the NEKO mice and renal 

specific Keap1-deficient mice, the skeletal phenotypes are not recapitulated in the renal 

specific Keap1-deficient mice, suggesting that the skeletal phenotype by Nrf2 

hyperactivation is not related to the renal phenotype. Experiments with primary culture 

cells derived from Keap1-null mice showed that differentiation of both osteoclasts and 

osteoblasts were attenuated, demonstrating that impaired differentiation of osteoblasts 

rather than osteoclasts is responsible for bone hypoplasia caused by Nrf2 

hyperactivation. Thus, we propose that the appropriate control of Nrf2 activity by 

Keap1 is essential for maintaining bone homeostasis. 

(194/200 words) 
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Introduction 

Bone homeostasis is believed to be maintained on the balance between formation and 

resorption mediated by osteoblasts and osteoclasts, respectively (Manolagas, 2000). 

Reactive oxygen species (ROS) have been implicated as an important factor regulating 

the bone homeostasis. Several in vitro and in vivo studies reported that increased 

oxidative stress shows negative effects on bone formation by modulating differentiation 

and survival of osteoblasts (Mody et al, 2001; Lean et al, 2003; Bai et al, 2004; Jun et al, 

2008). Clinical studies have also demonstrated that dysregulation of the antioxidant 

system and subsequent ROS accumulation are both important mediators of bone loss 

(Asagiri and Takayanagi, 2007). However, it remains to be clarified how oxidative 

stresses induce bone loss. 

Transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) plays a key 

role in the cytoprotection from oxidative stress and xenobiotic stress (Itoh et al, 1997; 

Suzuki et al, 2013). Under unstressed conditions, Nrf2 protein level is maintained at low 

level as Nrf2 is ubiquitinated by Keap1 (Kelch-like ECH-associated protein 1)-based 

ubiquitin E3 ligase complex and degraded by the proteasome (Itoh et al, 1999; 

Kobayashi et al, 2004; Suzuki and Yamamoto, 2015). Upon the exposure to oxidative 

and/or xenobiotic stresses that inactivates Keap1, Nrf2 is stabilized and activates 

transcription of various cytoprotective genes, conferring resistance against the stresses 

(Suzuki and Yamamoto, 2017). 

It has been reported that osteoclast differentiation is enhanced by Nrf2 deficiency 

(Hyeon et al, 2013) and suppressed by Nrf2 activation through deletion of Keap1 (Sakai 

et al, 2017), suggesting that Nrf2 suppress bone resorption and subsequently promote 

bone formation. In contrast, overexpression of Nrf2 negatively regulate 

osteoblastgenesis of MC3T3-E1 cells (Hinoi et al, 2006). Although these observations 

suggest that differentiation of both osteoclasts and osteoblasts is suppressed by Nrf2 

activation, physiological effects of the Nrf2 activation on bone development have not 

been fully clarified yet. 

Nrf2 is constitutively activated in Keap1-null mouse (Wakabayashi et al, 2003), so 

that the Keap1-null mouse is a good model for the understanding of physiological 

contribution of Nrf2 activation to bone homeostasis. However, juvenile lethal due to 

hyperkeratosis in the upper digestive tract, which leads to the obstruction of the 
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esophagus and death by starvation made it infeasible to assess the effects of 

Keap1-deficiency on bone homeostasis (Wakabayashi et al, 2003). In this study, 

therefore, we decided to utilize a viable mouse model harboring systemic activation of 

Nrf2, in which a squamous epithelium-specific Nrf2-deficiency in the context of 

systemic Keap1-deficiency (Keap1–/–::Nrf2Flox/Flox::K5-Cre or NEKO mice) corrects the 

hyperkeratosis of the esophagus, and subsequent lethality, while hyperactivation of Nrf2 

is observed in most tissues, with the exception of the esophagus and skin (Suzuki et al, 

2017). We found that NEKO mice exhibited small body size and low bone density. 

Experiments with primary cells derived from Keap1-null mice indicates that 

differentiation of both osteoclasts and osteoblasts is attenuated, indicating that Nrf2 

activation inhibits differentiation of both osteoclasts and osteoblasts. These results 

support the notion that reduction of bone formation in NEKO mice is due to inhibition 

of osteoblast differentiation by Nrf2 activation and that Nrf2 activation lead to 

hypoplasia of bone mass by impairing differentiation of osteoblasts. 
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Results 

NEKO mice exhibit bone hypoplasia 

To investigate function of Nrf2 on bone development, we examined Keap1-null mice in 

which Nrf2 is constitutively activated. Because of their juvenile lethality due to 

hyperkeratosis of esophagus (Wakabayashi et al, 2003), it has been difficult to examine 

adult Keap1-null mice. We generated NEKO mice that are able to survive until 

adulthood. NEKO mice harbor hyperactivation of Nrf2 in most tissues with the 

exception of the esophagus and skin (Suzuki et al, 2017). 

We first examined whole appearance of the mouse using X-ray photography (Fig 

1A,B). The picture showed that NEKO mouse was smaller than control mouse, but 

skeletal malformation was not observed in NEKO mice (Fig 1A,B). This phenotype was 

not observed in the Keap1–/–::Nrf2–/– mice (Wakabayashi et al, 2003), indicating that the 

skeletal phenotype is due to hyperactivation of Nrf2. Consistent with the small body of 

NEKO mice, femur length of NEKO mice is significantly smaller than that of control 

mice (Fig 1C,D), indicating the impaired growth of NEKO mice. 

To further investigate bone mass, we examined femur of NEKO and control mice 

at age of 8-10 weeks by 3-dimensional reconstruction CT imaging (Fig. 2A,B). Whole 

appearance of femur from NEKO mice shows increased radiolucency and smaller bone 

size (Fig. 2A,B). Cross-section image of femur visually shows that thinner cortical bone 

and sparser trabecular bone in NEKO mice (Fig. 2C,D). Bone morphometric parameters 

were also assessed from proximal to distal area of femur with a µCT analysis program. 

Consistent with the 3-dimensional reconstruction imaging results, a dramatic decrease 

in cortical bone thickness (Ct. Th., Fig. 2E), volume bone mineral density (vBMD., Fig. 

2F) and cortical bone tissue mineral density (CB. TMD., Fig. 2G) in NEKO mice.  

The decrease of bone mass was reproducibly observed even in elder NEKO mice 

(Fig S1A-C). Showing very good agreement with the result of femur, three-dimensional 

reconstruction image of cranial bone displays that the radiolucency is increased in 

NEKO mice compared to control mice (Fig S2A-D), while no malformation in NEKO 

mice is observed (Fig S2A-D). While intensity of Alcian blue-positive cartilage in 

growth plate tends to be decreased in NEKO mice (Fig S3), thickness of femur growth 

plate was not affected in the mice, suggesting that chondrogenesis is also mildly 
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affected by Keap1 deficiency. In addition, blood ionized calcium level of NEKO mice 

was lower than that of control mice (Fig. 2H), indicating that the severe bone 

hypoplasia leads to reduction of blood ionized calcium level in NEKO mice. These 

results demonstrate that hyperactivation of Nrf2 leads to severe bone hypoplasia in 

mouse. 

 

Bone hypoplasia of NEKO mice is not linked to their renal failure 

Because NEKO mice display nephrogenic diabetes insipidus (Suzuki et al, 2017), we 

tested whether bone hypoplasia of NEKO mice is due to their renal dysfunction. To this 

end, we examined kidney-specific Keap1-deficient mice 

(Keap1Flox/Flox::Pax8-rtTA::tetO-Cre, or Keap1 TKO mice), and treated the mice with 

DOX from the embryonic stage, by administration of DOX to the pregnant mother. The 

Keap1 gene was specifically deleted in the renal tubular cells, and the Keap1 TKO mice 

displays nephrogenic diabetes insipidus, like NEKO mice (Suzuki et al, 2017). Femur 

length of Keap1 TKO mice is comparable to that of control mice (Fig. S3A,B). X-ray 

photography and 3-dimensional reconstruction imaging shows no different appearance 

between Keap1 TKO and control mice (Fig. S3C,D and S4A-D). In addition, there is no 

difference of bone morphometric parameters and blood ionized calcium level between 

Keap1 TKO and control mice (Fig. S4E-H), demonstrating that the severe bone 

hypoplasia in NEKO mice is not attributable to their renal dysfunction. 

 

Nrf2 hyperactivation leads to perturbation of bone homeostasis 

We next investigated how Keap1-deficiency affects the differentiation of osteoblasts 

and osteoclasts. First, we conducted in vitro differentiation experiments of osteoclasts 

using bone marrow (BM)-derived cells from NEKO and control mice. The BM cells 

were cultured in the medium supplemented with M-CSF and RANKL (Fig. 3A). After 

two-day pre-culture with M-CSF, RANKL was added to induce osteoclast 

differentiation. Five days after the induction, mature differentiated osteoclasts were 

visualized by TRAP staining. Whereas control BM cells produced the largest number of 

TRAP-positive multi-nucleated mature osteoclasts (Fig. 3B), NEKO mouse-derived BM 

cells produced fewer or practically no osteoclasts (Fig. 3C). This showed very good 

agreement with the previous report that osteoclast differentiation of splenic cells from 
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Keap1-deficient mice was impaired (Sakai et al, 2017). These results indicate that Nrf2 

activation suppresses osteoclast differentiation. 

Because NEKO mice showed severe bone hypoplasia despite the diminished 

osteoclast production from BM cells, we surmised that osteoblast differentiation might 

also be impaired in NEKO mice. To address this hypothesis, we conducted in vitro 

osteoblast differentiation experiment using newborn calvarias of Keap1+/– and Keap1–/– 

mice. Collected cells were pre-cultured for two days and induced to differentiate to 

osteoblasts by adding ascorbic acid, dexamethasone and β-glycerophosphate (Fig. 3D). 

Osteoblast differentiation was examined by measuring alkaline phosphatase (AP) 

staining. While the osteoblast differentiation of cells from Keap1+/– mice was nicely 

observed, that of Keap1–/– mice were severely impaired (Fig. 3E). Taken together, these 

results thus indicate that Nrf2 suppresses osteoblast differentiation and that reduction of 

bone mass in NEKO mice is due to impaired bone homeostasis by decreased osteoblast 

differentiation. 
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Discussion 

It has been shown that the Keap1-deficient mouse is a useful model for the study of 

Nrf2 hyperactivation, the juvenile lethality of mice hampers uses of the mice 

(Wakabayashi et al, 2003). To overcome this difficulty, we recently generated alive 

model of Keap1-null mouse referred to as NEKO mouse (Suzuki et al, 2017). In this 

study, we examined pathophysiological contribution of Nrf2 activation to bone 

formation utilizing the NEKO mice. We found that hyperactivation of Nrf2 leads to low 

bone density. This novel phenotype of Nrf2 activation is independent of nephrogenic 

diabetes insipidus identified in NEKO mice in the previous study (Suzuki et al, 2017). 

Primary culture experiments using newborn calvarias cells from Keap1-null mice 

indicate that impaired osteoblast differentiation is responsible for bone hypoplasia 

caused by the Nrf2 hyperactivation. These results indicate that the Nrf2 hyperactivation 

leads to bone hypoplasia. 

The finding that osteoblast differentiation of primary newborn calvarias cells is 

impaired by the Keap1-deficiency is consistent with the previous observation that Nrf2 

overexpression in osteoblastic MC3T3 cells showed osteoblast differentiation defects 

(Hinoi et al, 2006). Nrf2 has been reported to interact with Runx2, a master 

transcription factor of osteoblastgenesis, and interferes with the Runx2-dependent 

transcriptional activation (Hinoi et al, 2006). Although Nrf2 in general acts as an 

activator (Katoh et al, 2001; Sekine et al, 2016), in certain context Nrf2 acts as a 

suppressor of gene expression; for instance, genes for inflammatory cytokines 

(Kobayashi et al, 2016). Therefore, the repressor function of Nrf2 for Runx2 gene could 

be a plausible mechanism underlying the impaired osteoblastgenesis by Nrf2. Another 

report showed that some members of leucine zipper (bZIP) transcriptional factors. such 

as C/EBPβ and ATF4, are involved in osteoblastgenesis (He et al, 2001), implying that 

Nrf2 might compete with the other bZIP members for their binding sequence. Moreover, 

a recent report shows that Nrf2 activation impairs quiescence and bone marrow 

reconstitution capacity of hematopoietic stem cells (Murakami et al, 2017), implying 

that supply of osteoblasts may be impaired by the Nrf2 activation. Regarding molecular 

mechanism of Nrf2-mediated suppression of osteoclastgenesis, we recently found that 

Keap1-deficient macrophages are unable to differentiate into osteoclasts in vitro via 
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attenuation of RANKL-mediated signaling and expression of NFATc1 (nuclear factor 

of activated T cells cytoplasmic 1) (Sakai et al, 2017). 

In light of the use of Nrf2-inducing compounds as potential medical treatments, 

many studies have shown that pharmacological Nrf2 induction gives rise to a protective 

effect against a variety stresses, including ischemia-reperfusion injury (Nezu et al, 2017), 

carcinogenesis (Kensler and Wakabayashi, 2010) and inflammation (Keleku-Lukwete et 

al, 2017; Kobayashi et al, 2016). Although there are many papers that have assessed 

effects of Nrf2-induing chemicals (Kensler et al, 2013; Suzuki and Yamamoto, 2017), to 

our knowledge it has never been verified that such Nrf2 inducers provoke impairment 

of bone homeostasis. In this regard, we previous found that Nrf2 induction during 

development cause nephrogenic diabetes insipidus (Suzuki et al, 2017), but the Nrf2 

induction during adulthood will not cause such adverse effects in the kidney. These 

observations suggest that the Nrf2-inducer treatment may have a critical period during 

development. Further investigations are necessary to clarify whether Nrf2 is actually 

induced in bone cells under physiological or pathological condition. 

Of note, de novo mutations in human NRF2 gene that induce NRF2 were recently 

identified (Huppke et al, 2017), and the cases with the NRF2 induction displayed mild 

developmental delay, short stature and delayed bone age (Huppke et al, 2017). The 

phenotypes observed in the cases are consistent with the phenotype we have observed in 

the NEKO mice, including the small body length and low bone density. These 

observations in human cases and in NEKO mouse analysis in combination support the 

contention that the Nrf2 hyperactivation in certain developmental window leads to the 

impairment of bone formation and homeostasis. 
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Experimental procedures 

Mice 

Generation of esophageal Nrf2-deficient and systemic Keap1-null mice (NEKO, 

Keap1-/-::Nrf2Flox/Flox::Keratin5-Cre) and renal tubule-specific Keap1 knockout mice 

(Keap1 TKO, Keap1Flox/Flox::Pax8-rtTA::TetO-Cre) were described previously (Suzuki 

et al, 2017). For analysis of NEKO mice, littermate mice (Nrf2Flox/Flox::K5-Cre:Keap1+/– 

or Nrf2Flox/Flox::Keap1+/––) were used as controls. For analysis of Keap1 TKO mice, 

littermate mice (Keap1Flox/Flox or Keap1Flox/Flox::Pax8-rtTA) were used as controls. 

Pregnant female mice were fed with 1-mg/ml doxycyline (DOX) in the drinking water. 

Blood samples were collected from the mice and analyzed using iSTAT-1 analyzer 

(Abott) for blood ionized calcium (Ca) level. All mice were kept in 

specific-pathogen-free conditions and were treated according to the regulations of The 

Standards for Human Care and Use of Laboratory Animals of Tohoku University and 

Guidelines for Proper Conduct of Animal Experiments of the Ministry of Education, 

Culture, Sports, Science, and Technology of Japan. 

 

Osteoblast differentiation culture 

For in vitro osteoblast differentiation, newborn calvarias were digested with 1-mg/ml 

collagenase (Wako) and 2-mg/mL Dispase (Gibco) at 37°C for 15 minutes with the 

repeat of this at least 5 times. The cells were then cultured withα-MEM (Wako) with 

10% FBS for 5-7 days. After primary culture cells were treated with 0.25% 

Trypsin-EDTA solution (Sigma), cells were cultured in osteogenic medium (50-μM 

ascorbic acid, 10-nM dexamethasone, and 10-mM β-glycerophosphate) for 14 days. For 

quantifying alkaline phosphatase (ALP) activity, ALP assay was performed as 

described (Nishikawa et al, 2010). For quantitative analysis, the densities of scanned 

images of stained plate were measured using Image J software.  

 

Osteoclast differentiation culture 

The in vitro osteoclast differentiation was conducted as described (Nishikawa et al, 

2010). Briefly, bone marrow cells were flushed out from femur and tibia of female mice 

in each genotype at 7-10 weeks. The cells were cultured in 10% FBS-αMEM with 10 
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ng/ml of M-CSF (R&D Systems) for 2 days, and osteoclast precursor cells were 

obtained. The cells were cultured in 10% FBS-αMEM with 50-ng/ml RANKL (Oriental 

Yeast) in the presence of 10-ng/ml M-CSF for additional 5 days. Quantification of 

tartrate-resistant acid phosphatase (TRAP) activity was performed by TRACP & ALP 

double-stain Kit (Takara). To evaluate osteoclast differentiation, TRAP-positive 

multi-nucleated cells were counted as mature osteoclasts. For quantitative analysis, the 

densities of scanned images of stained plate were measured using Image J software. 

 

Microcomputed tomography analysis 

Whole body or full length of femur of several stage female mice was µCT scanned with 

a Latheta LCT-200 (Hitachi-Aloka) to analyze bone shape, lipid volume and bone 

morphometry. Three-dimensional reconstruction images of bone were obtained by 

Amira (M@xnet). 

 

Alcian blue staining 

Femurs were fixed in 70% ethanol, decalcified paraffin-embedded, and sectioned to 

stain with Alcian blue. For quantitative analysis, the densities and thickness of scanned 

images were measured using Image J software. 

 

Statistical analyses 

Data are expressed as the mean ± SE. For statistical analysis, pairwise comparisons 

were made by Mann-Whitney U test. P-values < 0.05 were considered statistically 

significant. 
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Figure legends 

 

Figure 1 NEKO mice show small body and femur length 

(A, B) X-ray photographs of whole mouse body of control (A) and NEKO (B) 

littermate male mice at 8-10 weeks. Scale bars, 1.5 cm. (C) The representative femur 

appearance of control (left) and NEKO (right) mice. Right femur of male mice at 8-10 

weeks. Scale bars, 5 mm. (D) Femur length from proximal end of macro-nodular or 

femur head to the distal end of femur of control (n=6) and NEKO (n=6) male mice. 

*p<0.05. 

 

Figure 2 NEKO mice show decreased bone mass compared to control mice 

(A-D) Three-dimensional re-constructional images of femurs from µCT analysis 

obtained from 8-10 week-old control and NEKO male mice. (A, B) Representative 

overview of femur. Scale bars, 2.5 mm. (C, D) The representative cross sections of 

distal femur at 0.3-0.8 mm above the distal growth plate. Scale bars, 500 µm. (E-G) 

Bone morphometric parameters assessed with a µCT analysis program of femur of 8-10 

week-old control (n=3) and NEKO (n=3) male mice. (E) Average cortical thickness (Ct. 

Th) of control (black) and NEKO (red) mice. (F) Volume bone mineral density (vBMD) 

of control (black) and NEKO (red) mice. (G) Cortical bone tissue mineral density (CB. 

TMD) of control (black) and NEKO (red) mice. Data are means ± SE. *p<0.05, 

**p<0.01. (H) Blood ionized calcium (Ca) level in control (n=5) and NEKO (n=6) 

mixed-gender mice at 3-6 weeks of age. Data are means ± SE. **p<0.01. 

 

Figure 3 Nrf2 activation suppresses both osteoclastgenesis and osteoblastgenesis 

(A) Osteoclast differentiation protocol. Osteoclast progenitor cells were obtained from 

femur of 6-8-week-old NEKO and control littermate mixed gender mice, and were 

cultured with M-CSF and RANKL. (B, C) Representative images of cultured 

osteoclasts obtained from femur of control (B) and NEKO (C) mixed gender mice were 

subjected to TRAP staining. Scale bars, 100 µm. (D) Relative intensity of TRAP 

staining of cultured osteoclasts obtained from femur of control (n=3) and NEKO (n=3) 

mice. Data are means ±  SE. *p<0.05. (E) Osteoblast differentiation protocol. 
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Newborn calvarias were digested with collagenase and Dispase, and harvested in 

α-MEM medium. After several passages, the osteoblast cells were cultured with 

osteoblast differentiation medium. Keap1+/– and Keap1–/– osteoblast cells were cultured 

with ascorbic acid, ß-glycerophosphate and dexamethasone for 14 days. (F) Cultured 

cells were stained with ALP staining at each time point. Representative data are shown. 

(G) Relative intensity of ALP staining of cultured osteoblasts obtained from Keap1+/– 

(n=3) and Keap1–/– (n=3) mice. Data are means ± SE. *p<0.05. 


