19 research outputs found

    Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism

    Get PDF
    PIN proteins are auxin export carriers that direct intercellular auxin flow and in turn regulate many aspects of plant growth and development including responses to environmental changes. The Arabidopsis R2R3-MYB transcription factor FOUR LIPS (FLP) and its paralogue MYB88 regulate terminal divisions during stomatal development, as well as female reproductive development and stress responses. Here we show that FLP and MYB88 act redundantly but differentially in regulating the transcription of PIN3 and PIN7 in gravity-sensing cells of primary and lateral roots. On the one hand, FLP is involved in responses to gravity stimulation in primary roots, whereas on the other, FLP and MYB88 function complementarily in establishing the gravitropic set-point angles of lateral roots. Our results support a model in which FLP and MYB88 expression specifically determines the temporal-spatial patterns of PIN3 and PIN7 transcription that are closely associated with their preferential functions during root responses to gravity

    A plant virus causes symptoms through the deployment of a host-mimicking protein domain to attract the insect vector.

    Get PDF
    During compatible plant-virus interactions, viruses can interfere with the normal developmental program of their hosts, leading to the appearance of phenotypes that we usually identify as ‘’symptoms of infection’’ (leaf curling and yellowing, stunting, dwarfism, necrosis). Despite their relevance, the molecular mechanisms underlying symptom induction and their biological meaning, if any, remain poorly understood. By using tomato yellow leaf curl virus (TYLCV, Geminivirus) as model, we have isolated C4 as the main protein responsible for the induction of TYLCV-associated symptoms in tomato. C4, by mimicking a host protein domain, the Conserved C-termini in LAZY1 protein family (CCL) domain, physically interacts with the RCC1-like domain-containing plant proteins (RLDs). By interacting with the RLDs through the CCL-like domain, C4 displaces one endogenous interactor, LAZY (LZY), interfering with RLD functions in processes such as auxin signaling and endomembrane trafficking, which correlates with the manifestation of symptoms. Surprisingly, we observed that appearance of C4-mediated symptoms in tomato plants plays no major role in viral replication nor movement, but they serve as attractants for the insect vector, the whitefly Bemisia tabaci, which preferentially feeds on tomato plants exhibiting strong symptoms of viral infection. These results suggest that, during plant-virus co-evolution, symptoms may have appeared as a strategy to promote viral transmission by the insect vector, at least in some specific plant-virus-vector pathosystems.Work in RLD’s lab is partially funded by the Excellence Strategy of the German Federal and State Governments, the ERC-COG GemOmics (101044142), the DeutscheForschungsgemeinschaft (DFG, German Research foundation) (project numbers LO 2314/1-1 and SBF 1101/3, C08), and a Royal Society Newton Advance grant (NA140481 – NAF\R2\180857). EA is the recipient of a Marie SkƂodowska-Curie Grant from the European Union’s Horizon 2020 Research and Innovation Program (Grant 896910-GeminiDECODER). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing[W][OA]

    No full text
    This work describes the mechanism of statolith sedimentation during Arabidopsis gravity sensing. SGR9, a RING-type E3 ligase, is localized to statoliths, which interact with F-actin. SGR9 modulates the interaction between statoliths and F-actin and promotes the detachment of statoliths from F-actin, allowing the statoliths to sediment in the direction of gravity

    Gravity-Sensing Tissues for Gravitropism Are Required for “Anti-Gravitropic” Phenotypes of lzy Multiple Mutants in Arabidopsis

    No full text
    Plant posture is controlled by various environmental cues, such as light, temperature, and gravity. The overall architecture is determined by the growth angles of lateral organs, such as roots and branches. The branch growth angle affected by gravity is known as the gravitropic setpoint angle (GSA), and it has been proposed that the GSA is determined by balancing two opposing growth components: gravitropism and anti-gravitropic offset (AGO). The molecular mechanisms underlying gravitropism have been studied extensively, but little is known about the nature of the AGO. Recent studies reported the importance of LAZY1-LIKE (LZY) family genes in the signaling process for gravitropism, such that loss-of-function mutants of LZY family genes resulted in reversed gravitropism, which we term it here as the “anti-gravitropic” phenotype. We assume that this peculiar phenotype manifests as the AGO due to the loss of gravitropism, we characterized the “anti-gravitropic” phenotype of Arabidopsis lzy multiple mutant genetically and physiologically. Our genetic interaction analyses strongly suggested that gravity-sensing cells are required for the “anti-gravitropic” phenotype in roots and lateral branches. We also show that starch-filled amyloplasts play a significant role in the “anti-gravitropic” phenotype, especially in the root of the lzy multiple mutant

    Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton

    Get PDF
    æ€ç‰©ăźć§żć‹ąă‚’æ±șă‚ă‚‹ă—ăăżăźè§Łæ˜Ž -ăŸăŁă™ăă«ăȘろうべする抛-. äșŹéƒœć€§ć­Šăƒ—ăƒŹă‚čăƒȘăƒȘăƒŒă‚č. 2015-04-07.Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light. After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism and autostraightening and modelled as proprioception. However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin–myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin–myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system

    A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism

    No full text
    Plants can sense the direction of gravity and change the growth orientation of their organs. The molecular mechanisms of gravity sensing and signal transduction during gravitropism are not well known. We have isolated several shoot gravitropism (sgr) mutants of Arabidopsis. The sgr3-1 mutant exhibits a reduced gravitropic response in the inflorescence stems. In the inflorescence stems of Arabidopsis, gravity is sensed in endodermal cells that contain sedimentable amyloplasts. In sgr3-1, some amyloplasts in the endodermis failed to sediment in the direction of gravity. SGR3 encodes a syntaxin, AtVAM3, which had previously been cloned as a homologue of yeast Vam3p. AtVAM3 is localized to the prevacuolar compartment and vacuole and is suggested to function in vesicle transport to the vacuole. We have also cloned another soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE), ZIG/AtVTI11, a mutation that causes abnormal gravitropism. This mutant displayed an abnormal distribution of amyloplasts in the endodermal cells similar to that in sgr3-1. Endodermis-specific expression of SGR3 and ZIG by using the SCR promoter could complement the abnormal shoot gravitropism of each mutant. Protein–protein interaction between AtVAM3 and AtVTI11 in the endodermal cells was detected immunologically. The sgr3-1 mutation appeared to reduce the affinity of AtVAM3 for AtVTI11 or SYP5. These results suggest that vesicle transport to the prevacuolar compartment/vacuole in the endodermal cells, mediated by a specific SNARE complex containing AtVAM3 and AtVTI11, plays an important role in shoot gravitropism

    SGR2, a Phospholipase-Like Protein, and ZIG/SGR4, a SNARE, Are Involved in the Shoot Gravitropism of Arabidopsis

    No full text
    In higher plants, the shoot and the root generally show negative and positive gravitropism, respectively. To elucidate the molecular mechanisms involved in gravitropism, we have isolated many shoot gravitropism mutants in Arabidopsis. The sgr2 and zig/sgr4 mutants exhibited abnormal gravitropism in both inflorescence stems and hypocotyls. These genes probably are involved in the early step(s) of the gravitropic response. The sgr2 mutants also had misshapen seed and seedlings, whereas the stem of the zig/sgr4 mutants elongated in a zigzag fashion. The SGR2 gene encodes a novel protein that may be part of a gene family represented by bovine phosphatidic acid–preferring phospholipase A1 containing a putative transmembrane domain. This gene family has been reported only in eukaryotes. The ZIG gene was found to encode AtVTI11, a protein that is homologous with yeast VTI1 and is involved in vesicle transport. Our observations suggest that the two genes may be involved in a vacuolar membrane system that affects shoot gravitropism

    Involvement of the Vacuoles of the Endodermis in the Early Process of Shoot Gravitropism in Arabidopsis

    No full text
    The endodermal cells of the shoot are thought to be the gravity-sensing cells in Arabidopsis. The amyloplasts in the endodermis that sediment in the direction of gravity may act as statoliths. Endodermis-specific expression of SGR2 and ZIG using the SCR promoter could complement the abnormal shoot gravitropism of the sgr2 and zig mutants, respectively. The abnormalities in amyloplast sedimentation observed in both mutants recovered simultaneously. These results indicate that both genes in the endodermal cell layer are crucial for shoot gravitropism. ZIG encodes AtVTI11, which is a SNARE involved in vesicle transport to the vacuole. The fusion protein of SGR2 and green fluorescent protein localized to the vacuole and small organelles. These observations indicate that ZIG and SGR2 are involved in the formation and function of the vacuole, a notion supported by the results of subcellular analysis of the sgr2 and zig mutants with electron microscopy. These results strongly suggest that the vacuole participates in the early events of gravitropism and that SGR2 and ZIG functions are involved
    corecore