35 research outputs found

    Planetary protection: an international concern and responsibility

    Get PDF
    Planetary protection is a set of measures agreed upon at an international level to ensure the protection of scientific investigation during space exploration. As space becomes more accessible with traditional and new actors launching complex and innovative projects that involve robotics (including sample return) and human exploration, we have the responsibility to protect the pristine environments that we explore and our own biosphere. In this sense, the Committee on Space Research (COSPAR) provides the international standard for planetary protection as well as a forum for international consultation. COSPAR has formulated a Planetary Protection Policy with associated requirements for responsible space exploration. Although not legally binding under international law, the standard offered by the Policy with its associated requirements is internationally endorsed along with implementation guidelines supplied for reference in support States’ compliance with Article IX of the United Nations Outer Space Treaty of 1967. Indeed, States parties to the Outer Space Treaty (under Article VI) are responsible for any space activities in their countries, governmental and non-governmental. The main goal of this Policy is to avoid compromising the search for any lifeforms on other celestial bodies and to protect the Earth from a potential threat posed by extraterrestrial samples returned by an interplanetary mission. The COSPAR Planetary Protection Policy has defined five categories, depending on the target and objective of the specific space mission. Associated to these categories are requirements are various degrees of rigor in the contamination control applied. The Policy is assessed regularly and updated with input from new scientific findings and in conjunction with the fast-evolving space exploration milieu. The COSPAR Panel on Planetary Protection (PPP) is a designated international committee composed of scientists, agency representatives and space experts. Its role is to support and revise the COSPAR Policy and its related requirements (https://cosparhq.cnes.fr/scientific-structure/panels/panel-on-planetary-protection-ppp/). The Panel’s activities deal with the individual needs of a space mission while exercising swift care and expertise to ensure sustainable exploration of the Solar System

    Origin of rutile-bearing ilmenite Fe-Ti deposits in Proterozoic anorthosite massifs of the Grenville Province

    No full text
    The Saint-Urbain and Big Island rutile-bearing ilmenite Fe-Ti oxide deposits are located in the composite 450 km² Saint-Urbain anorthosite (1055-1046 Ma, U-Pb zircon) and in the Lac Allard intrusion (1057-1062 Ma, U-Pb zircon) of the 11,000 km² Havre-Saint Pierre anorthosite suite, respectively, in the Grenville Province of Eastern Canada. Slow cooling rates of 3-4°C/m.y. are estimated for both anorthosites, based on combined U-Pb zircon/rutile/apatite and ⁴⁰Ar/³⁹ Ar biotite/plagioclase geochronology, and resulted from emplacement during the active Ottawan Orogeny. Slow cooling facilitated (1) diffusion of Zr from ilmenite and rutile, producing thin (10-100 microns) zircon rims on these minerals, and (2) formation of sapphirine via sub-so lidus reactions of the type: spinel + orthopyroxene + rutile ± corundum → sapphirine + ilmenite. New chemical and analytical methods were developed to determine the trace element concentrations and Hf isotopic compositions of Ti-based oxides. Rutile is a magmatic phase in the deposits with minimum crystallization temperatures of 781°C to 1016°C, calculated by Zr-in rutile thermometry. Ilmenite present in rutile-free samples has higher Xhem (hematite proportion in ilmenite), higher high field strength element concentrations (Xhem = 30-17; Nb = 16.1-30.5 ppm; Ta 1.28-1.70 ppm), and crystallized at higher temperatures than ilmenite with more fractionated compositions (Xhem = 21-11; Nb = 1.36-3.11 ppm; Ta = <0.18 ppm) from rutile-bearing rocks. The oxide deposits formed by density segregation and accumulation at the bottom of magma reservoirs, in conditions closed to oxygen, from magmas enriched in Fe and Ti. The initial ¹⁷⁶Hf/¹⁷⁷ Hf of rutile and ilmenite (Saint Urbain [SU] = 0.28219-0.28227, Big Island [BI] = 0.28218-0.28222), and the initial Pb isotopic ratios (e.g.²⁰⁶Pb/²⁰⁴ Pb: SU = 17.134-17.164, BI = 17.012-17.036) and ⁸⁷Sr/⁸⁶ Sr (SU = 0.70399-0.70532, BI = 0.70412-0.70427) of plagioclase from the deposits overlap with the initial isotopic ratios of ilmenite and plagioclase from each host anorthosite, which indicates that they have common parent magmas and sources. The parent magmas were derived from a relatively depleted mantle reservoir that appears to be the primary source of all Grenvillian anorthosite massifs and existed for --600 m.y. along the margin of Laurentia during the Proterozoic.Science, Faculty ofEarth, Ocean and Atmospheric Sciences, Department ofGraduat

    Mineralogical and lithological unmixing with radiative transfer modelling in the open-pit context of Mine Canadian Malartic

    No full text
    International audienceIn this study, Hapke's radiative transfer model is used to verify the feasibility of retrieving the composition and grain-size of the ground in an open-pit mine, seen as a regolith. Such a tool could be useful for dust surveys and thus preventing potential environmental risks such as acid mine drainage. As the true compositional endmembers of the medium are not retrieved but rather chosen from spectral libraries and the range of grain sizes (a few to hundreds of micrometers) and porosities (0.22 to 0.52 for the filling factor) vary greatly in an open-pit mine, we show that the mineralogical unmixing results are not reliable. Too many combinations of different relative abundances, grain sizes and porosities lead to fits between modelled and measured spectra under 0.3% in reflectance. To tackle this issue, we explore a lithological unmixing approach. Considering lithologies as endmembers, as opposed to considering minerals, reduces the variability in the solutions as fewer endmembers are used. The results show that the studied samples with multi-component grains behave spectrally as expected for mono-mineral grains. With no root mean square errors higher than 5%, the relative abundances retrieved are sufficiently precise to consider mapping lithologies with this method

    Monitoring of Hemodynamics With Right Heart Catheterization in Children With Pulmonary Arterial Hypertension

    No full text
    Background Right heart catheterization (RHC) is a high‐risk procedure in children with pulmonary arterial hypertension without clear guidelines for the indications and targets of invasive reassessment. Our objectives are to define the aims of repeated RHC and evaluate the correlation between noninvasive criteria and hemodynamic parameters. Methods and Results Clinical and hemodynamic characteristics from 71 incident treatment‐naïve children (median age 6.2 years) with pulmonary arterial hypertension who had a baseline and reevaluation RHC were analyzed. Correlations between noninvasive predictors and hemodynamic parameters were tested. Adverse outcomes were defined as death, lung transplantation, or Potts shunt. At baseline, pulmonary vascular resistance index (hazard ratio [HR] 1.07 per 1 WU·m2 increase [95% CI, 1.02–1.12], P=0.002), stroke volume index (HR 0.95 per 1 L·min−1·m−2 increase [95% CI, 0.91–0.99], P=0.012), pulmonary artery compliance index (HR 0.16 per 1 mL·mm Hg−1·m−2 increase [95% CI, 0.051–0.52], P=0.002), and right atrial pressure (HR, 1.31 per 1 mm Hg increase [95% CI, 1.01–1.71], P=0.043) were associated with adverse outcomes. Pulmonary vascular resistance index, pulmonary artery compliance index, and right atrial pressure were still associated with a worse outcome at second RHC. Noninvasive criteria accurately predicted hemodynamic evolution; however, 70% of the patients who had improved based on noninvasive criteria still presented at least 1 “at risk” hemodynamics at second RHC. Conclusions Pulmonary vascular resistance index, pulmonary artery compliance index, and right atrial pressure are solid predictors of adverse outcomes in pediatric pulmonary arterial hypertension and potential therapeutic targets. Noninvasive criteria accurately predict the evolution of hemodynamic parameters, but insufficiently. Repeated RHC are helpful to identify children with persistent higher risk after treatment introduction

    Desert Research and Technology Studies (DRATS) 2010 science operations: Operational approaches and lessons learned for managing science during human planetary surface missions

    Get PDF
    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space. The results from the RATS tests allow selection of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if communications are good and down-linking of science data is ensured, high quality science returns is possible regardless of communications. What is absent from reduced communications is the scientific interaction between the crew on the planet and the scientists on the ground. These scientific interactions were a critical part of the science process and significantly improved mission science return over reduced communications conditions. The test also showed that the quality of science return is not measurable by simple numerical quantities but is, in fact, based on strongly non-quantifiable factors, such as the interactions between the crew and the Science Operations Teams. Although themetric evaluation data suggested some trends, there was not sufficient granularity in the data or specificity in the metrics to allow those trends to be understood on numerical data alone

    Planetary protection: Updates and challenges for a sustainable space exploration

    No full text
    Planetary protection enables scientific return from solar system bodies investigations and at the same time protects life on Earth. As we continue to explore our solar system by landing machines and humans on other planets, we need to ascertain that we do not bring potentially dangerous material home to Earth or carry anything from Earth that may contaminate another planetary body and prevent scientific investigations. A Planetary Protection Policy has been developed by the Committee on Space Research (COSPAR), which provides a forum for international consultation in the area of space research. The COSPAR Planetary Protection Policy, and its associated requirements, is not legally binding under international law but is an agreed standard with implementation guidelines for compliance with Article IX of the Outer Space Treaty. States Parties to the Outer Space Treaty are responsible for national space activities under Article VI, including the activities of governmental and non-governmental entities. The current members of the COSPAR Panel on Planetary Protection are representatives from national space agencies and thematic experts from the science community of different countries (https://cosparhq.cnes.fr/scientific-structure/ppp). Other stakeholders, including the private sector, are invited to attend and present at the PPP meetings. The COSPAR PPP maintains and updates the COSPAR Planetary Protection Policy regularly, always reviewing all available scientific knowledge leading to updates to the policy, in particular as concerns the outer solar system and lunar exploration. Such updates are performed in a careful and balanced way to ensure that the right measures are envisaged to fulfil the rationales for planetary protection
    corecore