1,580 research outputs found

    Hadronic Masses and Regge Trajectories

    Get PDF
    A comprehensive phenomenological analysis of experimental data and some theoretical models is presented here (for mesons) to critically discuss how Regge trajectory parameters depend on flavor. Through analytic continuation of physical trajectories (obtained from resonance data) into the space like region, we derive the suppression factor for heavy flavor production. The case of our D Regge exchange, both for D and Λc\Lambda_c production, is considered in some detail. Good agreement with data is reached confirming that indeed the slopes of heavier flavors decrease. This result suggests that the confinement potential has a substantial dependence on the quark masses. In a simple non-relativistic model, constrained to produce linear Regge trajectories, it is shown that a linear quark mass dependence is required (in the confinement part of the potential) in order for the slope to decrease in the appropriate way.Comment: 19 pages, 9 Figures, IV Table

    Evolution and insights into the structure and function of the DedA superfamily containing TMEM41B and VMP1

    Get PDF
    TMEM41B and VMP1 are endoplasmic reticulum (ER)-localizing multi-spanning membrane proteins required for ER-related cellular processes such as autophagosome formation, lipid droplet homeostasis, and lipoprotein secretion in eukaryotes. Both proteins have a VTT domain, which is similar to the DedA domain found in bacterial DedA family proteins. However, the molecular function and structure of the DedA and VTT domains (collectively referred to as DedA domains) and the evolutionary relationships among the DedA domain-containing proteins are largely unknown. Here, we conduct remote homology search and identify a new clade consisting mainly of bacterial PF06695 proteins of unknown function. Phylogenetic analysis reveals that the TMEM41, VMP1, DedA, and PF06695 families form a superfamily with a common origin, which we term the DedA superfamily. Coevolution-based structural prediction suggests that the DedA domain contains two reentrant loops facing each other in the membrane. This topology is biochemically verified by the substituted cysteine accessibility method. The predicted structure is topologically similar to that of the substrate-binding region of Na+-coupled glutamate transporter solute carrier 1. A potential ion-coupled transport function of the DedA superfamily proteins is discussed

    Two-photon double ionization of helium: Evolution of the joint angular distribution with photon energy and two-electron energy sharing

    Get PDF
    Ab initio calculations of two-photon double ionization of helium with photon energies varying from the nonsequential regime to well above the double-ionization threshold are presented. A systematic study of the joint angular distributions of the two ionized electrons at different energy sharing shows that the role of electron correlations is imprinted in the joint angular distribution. In particular, a rather general pattern is identified in the nonsequential regime that is independent of photon energy, pulse length, and energy sharing between the two electrons. Interestingly, the same distribution pattern is found for the equal-energy-sharing case, even when the photon energy is well above the double-ionization threshold. In the case of an extremely uneven energy sharing, the distribution pattern changes drastically as the photon energy is increased. In particular, when the photon energy is greater than the second-ionization threshold, the dominant emission mode of the two electrons switches gradually from “back to back” to “side by side.” Finally, the joint angular distribution is found to provide clear evidence of the role of electron correlations in the initial state

    Constraining Lyman-alpha spatial offsets at 3<z<5.53<z<5.5 from VANDELS slit spectroscopy

    Get PDF
    We constrain the distribution of spatially offset Lyman-alpha emission (Lyα\alpha) relative to rest-frame ultraviolet emission in ∌300\sim300 high redshift (3<z<5.53<z<5.5) Lyman-break galaxies (LBGs) exhibiting Lyα\alpha emission from VANDELS, a VLT/VIMOS slit-spectroscopic survey of the CANDELS Ultra Deep Survey and Chandra Deep Field South fields (≃0.2 deg2{\simeq0.2}~\mathrm{deg}^2 total). Because slit spectroscopy compresses two-dimensional spatial information into one spatial dimension, we use Bayesian inference to recover the underlying Lyα\alpha spatial offset distribution. We model the distribution using a 2D circular Gaussian, defined by a single parameter σr,Lyα\sigma_{r,\mathrm{Ly}\alpha}, the standard deviation expressed in polar coordinates. Over the entire redshift range of our sample (3<z<5.53<z<5.5), we find σr,Lyα=1.70−0.08+0.09\sigma_{r,\mathrm{Ly}\alpha}=1.70^{+0.09}_{-0.08} kpc (68%68\% conf.), corresponding to ∌0.25\sim0.25 arcsec at ⟹z⟩=4.5\langle z\rangle=4.5. We also find that σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} decreases significantly with redshift. Because Lyα\alpha spatial offsets can cause slit-losses, the decrease in σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} with redshift can partially explain the increase in the fraction of Lyα\alpha emitters observed in the literature over this same interval, although uncertainties are still too large to reach a strong conclusion. If σr,Lyα\sigma_{r,\mathrm{Ly}\alpha} continues to decrease into the reionization epoch, then the decrease in Lyα\alpha transmission from galaxies observed during this epoch might require an even higher neutral hydrogen fraction than what is currently inferred. Conversely, if spatial offsets increase with the increasing opacity of the IGM, slit losses may explain some of the drop in Lyα\alpha transmission observed at z>6z>6. Spatially resolved observations of Lyα\alpha and UV continuum at 6<z<86<z<8 are needed to settle the issue.Comment: Submitted to MNRA

    Geometry and symmetries of multi-particle systems

    Get PDF
    The quantum dynamical evolution of atomic and molecular aggregates, from their compact to their fragmented states, is parametrized by a single collective radial parameter. Treating all the remaining particle coordinates in d dimensions democratically, as a set of angles orthogonal to this collective radius or by equivalent variables, bypasses all independent-particle approximations. The invariance of the total kinetic energy under arbitrary d-dimensional transformations which preserve the radial parameter gives rise to novel quantum numbers and ladder operators interconnecting its eigenstates at each value of the radial parameter. We develop the systematics and technology of this approach, introducing the relevant mathematics tutorially, by analogy to the familiar theory of angular momentum in three dimensions. The angular basis functions so obtained are treated in a manifestly coordinate-free manner, thus serving as a flexible generalized basis for carrying out detailed studies of wavefunction evolution in multi-particle systems.Comment: 37 pages, 2 eps figure

    Auction-based approach to resolve the scheduling problem in the steel making process

    Get PDF
    Steel production is an extremely complex process and determining coherent schedules for the wide variety of production steps in a dynamic environment, where disturbances frequently occur, is a challenging task. In the steel production process, the blast furnace continuously produces liquid iron, which is transformed into liquid steel in the melt shop. The majority of the molten steel passes through a continuous caster to form large steel slabs, which are rolled into coils in the hot strip mill. The scheduling system of these processes has very different objectives and constraints, and operates in an environment where there is a substantial quantity of real-time information concerning production failures and customer requests. The steel making process, which includes steel making followed by continuous casting, is generally the main bottleneck in steel production. Therefore, comprehensive scheduling of this process is critical to improve the quality and productivity of the entire production system. This paper addresses the scheduling problem in the steel making process. The methodology of winner determination using the combinatorial auction process is employed to solve the aforementioned problem. In the combinatorial auction, allowing bidding on a combination of assets offers a way of enhancing the efficiency of allocating the assets. In this paper, the scheduling problem in steel making has been formulated as a linear integer program to determine the scheduling sequence for different charges. Bids are then obtained for sequencing the charges. Next, a heuristic approach is used to evaluate the bids. The computational results show that our algorithm can obtain optimal or near-optimal solutions for combinatorial problems in a reasonable computation time. The proposed algorithm has been verified by a case study

    Electron attachment to valence-excited CO

    Get PDF
    The possibility of electron attachment to the valence 3Π^{3}\Pi state of CO is examined using an {\it ab initio} bound-state multireference configuration interaction approach. The resulting resonance has 4Σ−^{4}\Sigma^{-} symmetry; the higher vibrational levels of this resonance state coincide with, or are nearly coincident with, levels of the parent a3Πa^{3}\Pi state. Collisional relaxation to the lowest vibrational levels in hot plasma situations might yield the possibility of a long-lived CO−^- state.Comment: Revtex file + postscript file for one figur

    Extended gaussian ensemble solution and tricritical points of a system with long-range interactions

    Full text link
    The gaussian ensemble and its extended version theoretically play the important role of interpolating ensembles between the microcanonical and the canonical ensembles. Here, the thermodynamic properties yielded by the extended gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range interactions are analyzed. This model presents different predictions for the first-order phase transition line according to the microcanonical and canonical ensembles. From the EGE approach, we explicitly work out the analytical microcanonical solution. Moreover, the general EGE solution allows one to illustrate in details how the stable microcanonical states are continuously recovered as the gaussian parameter γ\gamma is increased. We found out that it is not necessary to take the theoretically expected limit γ→∞\gamma \to \infty to recover the microcanonical states in the region between the canonical and microcanonical tricritical points of the phase diagram. By analyzing the entropy as a function of the magnetization we realize the existence of unaccessible magnetic states as the energy is lowered, leading to a treaking of ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten, tricritical point calculations added. To appear in EPJ

    Magnetization plateau in a two-dimensional multiple-spin exchange model

    Full text link
    We study a multiple-spin exchange model on a triangular lattice, which is a possible model for low-density solid 3He films. Due to strong competitions between ferromagnetic three-spin exchange and antiferromagnetic four-spin one, the ground states are highly degenerate in the classical limit. At least 2^{L/2}-fold degeneracy exists on the L*L triangular lattice except for the SO(3) symmetry. In the magnetization process, we found a plateau at m/m_{sat}=1/2, in which the ground state is "uuud state" (a collinear state with four sublattices). The 1/2-plateau appears due to the strong four-spin exchange interaction. This plateau survives against both quantum and thermal fluctuations. Under a magnetic field which realizes the "uuud" ordered state, a phase transition occurs at a finite temperature. We predict that low-density solid 3He thin films may show the 1/2-plateau in the magnetization process. Experimental observation of the plateau will verify strength of the four-spin exchange. It is also discussed that this magnetization plateau can be understood as an insulating-conducting transition in a particle picture.Comment: 10 pages, RevTeX, 12 figures, added a reference and corrected typos, to be published in Phys.Rev.B (01 APR 99
    • 

    corecore