1,460 research outputs found

    Aerodynamic interference effects on tilting proprotor aircraft

    Get PDF
    The Green's function method was used to study tilting proprotor aircraft aerodynamics with particular application to the problem of the mutual interference of the wing-fuselage-tail-rotor wake configuration. While the formulation is valid for fully unsteady rotor aerodynamics, attention was directed to steady state aerodynamics, which was achieved by replacing the rotor with the actuator disk approximation. The use of an actuator disk analysis introduced a mathematical singularity into the formulation; this problem was studied and resolved. The pressure distribution, lift, and pitching moment were obtained for an XV-15 wing-fuselage-tail rotor configuration at various flight conditions. For the flight configurations explored, the effects of the rotor wake interference on the XV-15 tilt rotor aircraft yielded a reduction in the total lift and an increase in the nose-down pitching moment. This method provides an analytical capability that is simple to apply and can be used to investigate fuselage-tail rotor wake interference as well as to explore other rotor design problem areas

    Landslides, a Key Landform in the Global Geological Heritage

    Get PDF
    Landslides are important components of global geoheritage, but awareness of their significance and value in such terms seems scanty in the scientific community. Landslides are normally identified among various features of geological and geomorphological interest, and often considered a source of hazard. However, they are seldom identified as geosites and as part of geoheritage. This paper aims at filling these gaps by highlighting the importance of landslides in the global geoheritage. After a short introduction on the values and criteria to define landforms as geosites, based on literature review, we show to what extent landslides have been defined as geomorphosites and as part of geoheritage around the world. We then outline three aspects that should be specifically considered in the identification of landslides as geomorphosites, namely 1) past and present climate changes, 2) anthropic signature, and 3) risk perception. Finally, we describe four cases of spectacular landslides that serve as significant examples worldwide

    A magnetic internal mechanism for precise orientation of the camera in wireless endoluminal applications

    Get PDF
    Background and study aims: The use of magnetic fields to control operative devices has been recently described in endoluminal and transluminal surgical applications. The exponential decrease of magnetic field strength with distance has major implications for precision of the remote control. We aimed to assess the feasibility and functionality of a novel wireless miniaturized mechanism, based on magnetic forces, for precise orientation of the camera. Materials and methods: A remotely controllable endoscopic capsule was developed as proof of concept. Two intracapsular moveable permanent magnets allow fine positioning, and an externally applied magnetic field permits gross movement and stabilization. Performance was assessed in ex vivo and in vivo bench tests, using porcine upper and lower gastrointestinal tracts. Results: Fine control of capsule navigation and rotation was achieved in all tests with an external magnet held steadily about 15 cm from the capsule. The camera could be rotated in steps of 1.8°. This was confirmed by ex vivo tests; the mechanism could adjust the capsule view at 40 different locations in a gastrointestinal tract phantom model. Full 360° viewing was possible in the gastric cavity, while the maximal steering in the colonwas 45° in total. In vivo, a similar performance was verified, where the mechanism was successfully operated every 5 cm for 40 cm in the colon, visually sweeping from side to side of the lumen; 360° views were obtained in the gastric fundus and body, while antrally the luminal walls prevented full rotation. Conclusions: We report the feasibility and effectiveness of the combined use of external static magnetic fields and internal actuation to move small permanent intracapsular magnets to achieve wirelessly controllable and precise camera steering. The concept is applicable to capsule endoscopy as to other instrumentation for laparoscopic, endoluminal, or transluminal procedures

    Bariatric and metabolic surgery during COVID-19 outbreak phase 2 in Italy. Why, when and how to restart

    Get PDF
    In Italy elective bariatric and metabolic surgery was cancelled on February 21,2020 at the beginning of the so-called phase 1 of the SARS-CoV-2 outbreak. Gradually it was restarted on May 4,2020 at the beginning of the so-called phase 2, when epidemiological data showed containment of the infection. Before the outbreak in eight high-volume bariatric centers 840 patients were surgically treated developing a Covid-19 infection, during phase 1, in only 5 cases (0.6%) without mortality. The post-operative complication rate was similar when compared to the 836 subjects submitted to bariatric surgery the year before. Since the high prevalence of infection in subjects with BMI > 30, it was argued that early intervention on obesity during phase 2 could help to minimize the effects of the disease in the event of a possible reversion to a SARS-CoV-2 outbreak phase 1. At the same time a prospective observational study from July 1 till the WHO declaration of the end of the pandemic has started in the eight high volume centers to monitor the post-operative outcome and its effect on SARS-CoV-2 infection
    • …
    corecore