1,284 research outputs found
Greater incidence of depression with hypnotic use than with placebo
Abstract Background Although it has been claimed that insomnia causes an increased risk for depression, adequate controlled trials testing this hypothesis have not been available. This study contrasted the incidence of depression among subjects receiving hypnotics in randomized controlled trials versus those receiving placebo. Methods The incidence of depression among patients randomized to hypnotic drugs or placebo was compiled from prescribing information approved by the United States Food and Drug Administration (FDA) and from FDA New Drug Application documents. Available data for zolpidem, zaleplon, eszopiclone, and ramelteon were accessed. Results Data for 5535 patients randomized to a hypnotic and for 2318 randomized to placebo were compiled. The incidence of depression was 2.0% among participants randomized to hypnotics as compared to 0.9% among those randomized in parallel to placebo (p Conclusion Modern hypnotics were associated with an increased incidence of depression in data released by the FDA. This suggests that when there is a risk of depression, hypnotics may be contra-indicated. Preventive treatments such as antidepressant drugs, cognitive-behavioral therapy, or bright light might be preferred. Limitations in the FDA data prevented a formal meta-analysis, and there was a lack of information about drop-out rates and definitions of depression. Trials specifically designed to detect incident depression when treating insomnia with hypnotic drugs and better summarization of adverse events in trials submitted to the FDA are both necessary.</p
Recommended from our members
Output from VIP cells of the mammalian central clock regulates daily physiological rhythms
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing
Estimating magnetic filling factors from Zeeman-Doppler magnetograms
This is the author accepted manuscript. The final version is available from American Astronomical Society via the DOI in this record.Low-mass stars are known to have magnetic fields that are believed to be of dynamo origin. Two complementary techniques are principally used to characterise them. Zeeman-Doppler imaging (ZDI) can determine the geometry of the large-scale magnetic field while Zeeman broadening can assess the total unsigned flux including that associated with small-scale structures such as spots. In this work, we study a sample of stars that have been previously mapped with ZDI. We show that the average unsigned magnetic flux follows an activity-rotation relation separating into saturated and unsaturated regimes. We also compare the average photospheric magnetic flux recovered by ZDI, hBV i, with that recovered by Zeeman broadening studies, hBI i. In line with previous studies, hBV i ranges from a few % to ∼20% of hBI i. We show that a power law relationship between hBV i and hBI i exists and that ZDI recovers a larger fraction of the magnetic flux in more active stars. Using this relation, we improve on previous attempts to estimate filling factors, i.e. the fraction of the stellar surface covered with magnetic field, for stars mapped only with ZDI. Our estimated filling factors follow the well-known activity-rotation relation which is in agreement with filling factors obtained directly from Zeeman broadening studies. We discuss the possible implications of these results for flux tube expansion above the stellar surface and stellar wind models.European CommissionAustrian Space Application Programm
Investigating the Host-Range of the Rust Fungus Puccinia psidii sensu lato across Tribes of the Family Myrtaceae Present in Australia
The exotic rust fungus Puccinia psidii sensu lato was first detected in Australia in April 2010. This study aimed to determine the host-range potential of this accession of the rust by testing its pathogenicity on plants of 122 taxa, representative of the 15 tribes of the subfamily Myrtoideae in the family Myrtaceae. Each taxon was tested in two separate trials (unless indicated otherwise) that comprised up to five replicates per taxon and six replicates of a positive control (Syzygium jambos). No visible symptoms were observed on the following four taxa in either trial: Eucalyptus grandis×camaldulensis, E. moluccana, Lophostemon confertus and Sannantha angusta. Only small chlorotic or necrotic flecks without any uredinia (rust fruiting bodies) were observed on inoculated leaves of seven other taxa (Acca sellowiana, Corymbia calophylla ‘Rosea’, Lophostemon suaveolens, Psidium cattleyanum, P. guajava ‘Hawaiian’ and ‘Indian’, Syzygium unipunctatum). Fully-developed uredinia were observed on all replicates across both trials of 28 taxa from 8 tribes belonging to the following 17 genera: Agonis, Austromyrtus, Beaufortia, Callistemon, Calothamnus, Chamelaucium, Darwinia, Eucalyptus, Gossia, Kunzea, Leptospermum, Melaleuca, Metrosideros, Syzygium, Thryptomene, Tristania, Verticordia. In contrast, the remaining 83 taxa inoculated, including the majority of Corymbia and Eucalyptus species, developed a broad range of symptoms, often across the full spectrum, from fully-developed uredinia to no visible symptoms. These results were encouraging as they indicate that some levels of genetic resistance to the rust possibly exist in these taxa. Overall, our results indicated no apparent association between the presence or absence of disease symptoms and the phylogenetic relatedness of taxa. It is most likely that the majority of the thousands of Myrtaceae species found in Australia have the potential to become infected to some degree by the rust, although this wide host range may not be fully realized in the field
Advances in prevention and therapy of neonatal dairy calf diarrhoea : a systematical review with emphasis on colostrum management and fluid therapy
Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota-and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy
Radio Emission from Ultra-Cool Dwarfs
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very
low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed
that these objects can generate and dissipate powerful magnetic fields. Radio
observations provide unparalleled insight into UCD magnetism: detections extend
to brown dwarfs with temperatures <1000 K, where no other observational probes
are effective. The data reveal that UCDs can generate strong (kG) fields,
sometimes with a stable dipolar structure; that they can produce and retain
nonthermal plasmas with electron acceleration extending to MeV energies; and
that they can drive auroral current systems resulting in significant
atmospheric energy deposition and powerful, coherent radio bursts. Still to be
understood are the underlying dynamo processes, the precise means by which
particles are accelerated around these objects, the observed diversity of
magnetic phenomenologies, and how all of these factors change as the mass of
the central object approaches that of Jupiter. The answers to these questions
are doubly important because UCDs are both potential exoplanet hosts, as in the
TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans
J. Deeg and Juan Antonio Belmonte (Springer-Verlag
Circadian Integration of Glutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits
Neuropeptides are critical integrative elements within the central circadian clock in the suprachiasmatic nucleus (SCN), where they mediate both cell-to-cell synchronization and phase adjustments that cause light entrainment. Forward peptidomics identified little SAAS, derived from the proSAAS prohormone, among novel SCN peptides, but its role in the SCN is poorly understood.Little SAAS localization and co-expression with established SCN neuropeptides were evaluated by immunohistochemistry using highly specific antisera and stereological analysis. Functional context was assessed relative to c-FOS induction in light-stimulated animals and on neuronal circadian rhythms in glutamate-stimulated brain slices. We found that little SAAS-expressing neurons comprise the third most abundant neuropeptidergic class (16.4%) with unusual functional circuit contexts. Little SAAS is localized within the densely retinorecipient central SCN of both rat and mouse, but not the retinohypothalamic tract (RHT). Some little SAAS colocalizes with vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), known mediators of light signals, but not arginine vasopressin (AVP). Nearly 50% of little SAAS neurons express c-FOS in response to light exposure in early night. Blockade of signals that relay light information, via NMDA receptors or VIP- and GRP-cognate receptors, has no effect on phase delays of circadian rhythms induced by little SAAS.Little SAAS relays signals downstream of light/glutamatergic signaling from eye to SCN, and independent of VIP and GRP action. These findings suggest that little SAAS forms a third SCN neuropeptidergic system, processing light information and activating phase-shifts within novel circuits of the central circadian clock
Cavity Induced Interfacing of Atoms and Light
This chapter introduces cavity-based light-matter quantum interfaces, with a
single atom or ion in strong coupling to a high-finesse optical cavity. We
discuss the deterministic generation of indistinguishable single photons from
these systems; the atom-photon entanglement intractably linked to this process;
and the information encoding using spatio-temporal modes within these photons.
Furthermore, we show how to establish a time-reversal of the aforementioned
emission process to use a coupled atom-cavity system as a quantum memory. Along
the line, we also discuss the performance and characterisation of cavity
photons in elementary linear-optics arrangements with single beam splitters for
quantum-homodyne measurements.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
- …