10,229 research outputs found

    Mobilizing agro-biodiversity and social networks to cope with adverse effects of climate and social changes: experiences from Kitui, Kenya

    Get PDF
    Poster presented at 13th Congress of the International Society of Ethnobiology. Montpellier (France), 20-25 May 201

    Magnetic ordering and fluctuation in kagome lattice antiferromagnets, Fe and Cr jarosites

    Full text link
    Jarosite family compounds, KFe_3(OH)_6(SO_4)_2, (abbreviate Fe jarosite), and KCr_3(OH)_6(SO_4)_2, (Cr jarosite), are typical examples of the Heisenberg antiferromagnet on the kagome lattice and have been investigated by means of magnetization and NMR experiments. The susceptibility of Cr jarosite deviates from Curie-Weiss law due to the short-range spin correlation below about 150 K and shows the magnetic transition at 4.2 K, while Fe jarosite has the transition at 65 K. The susceptibility data fit well with the calculated one on the high temperature expansion for the Heisenberg antiferromagnet on the kagome lattice. The values of exchange interaction of Cr jarosite and Fe jarosite are derived to be J_Cr = 4.9 K and J_Fe = 23 K, respectively. The 1H-NMR spectra of Fe jarosite suggest that the ordered spin structure is the q = 0 type with positive chirality of the 120 degrees configuration. The transition is caused by a weak single-ion type anisotropy. The spin-lattice relaxation rate, 1/T_1, of Fe jarosite in the ordered phase decreases sharply with lowering the temperature and can be well explained by the two-magnon process of spin wave with the anisotropy.Comment: REVTeX, 14 pages with 5 figures. Submitted to Canadian Journal of Physic

    Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index s=1s=-1

    Full text link
    This paper is concerned with well-posedness of the Boussinesq system. We prove that the nn (n2n\ge2) dimensional Boussinesq system is well-psoed for small initial data (u0,θ0)(\vec{u}_0,\theta_0) (u0=0\nabla\cdot\vec{u}_0=0) either in (B,11B,1,1)×Bp,r1({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r} or in B,1,1×Bp,1,ϵ{B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty} if r[1,]r\in[1,\infty], ϵ>0\epsilon>0 and p(n2,)p\in(\frac{n}{2},\infty), where Bp,qs,ϵB^{s,\epsilon}_{p,q} (sRs\in\mathbb{R}, 1p,q1\leq p,q\leq\infty, ϵ>0\epsilon>0) is the logarithmically modified Besov space to the standard Besov space Bp,qsB^{s}_{p,q}. We also prove that this system is well-posed for small initial data in (B,11B,1,1)×(Bn2,11Bn2,1,1)({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}}).Comment: 18 page

    Depositional constraints and age of metamorphism in southern India: U-Pb chemical (EMPA) and isotopic (SIMS) ages from the Trivandrum Block

    Get PDF
    We report U–Pb electron microprobe (zircon and monazite) and Secondary Ion Mass Spectrometry (SIMS) U–Pb (zircon) ages from a granulite-facies metapelite and a garnet–biotite gniess from Chittikara, a classic locality within the Trivandrum Block of southern India. The majority of the electron-microprobe data on zircons from the metapelite define apparent ages between 1500 and 2500 Ma with a prominent peak at 2109±22 Ma, although some of the cores are as old as 3070 Ma. Zircon grains with multiple age zoning are also detected with 2500–3700 Ma cores, 1380–1520 mantles and 530–600 Ma outer rims. Some homogeneous and rounded zircon cores yielded late Neoproterozoic ages that suggest that deposition within the Trivandrum Block belt was younger than 610 Ma. The outermost rims of these grains are characterized by early Cambrian ages suggesting metamorphic overgrowth at this time. The apparent ages of monazite grains from this locality reveal multiple provenance and polyphase metamorphic history, similar to those of the zircons. In a typical case, Palaeoproterozoic cores (1759–1967 Ma) are enveloped by late Neoproterozoic rims (562–563 Ma), which in turn are mantled by an outermost thin Cambrian rim ([similar]515 Ma). PbO v. ThO*2 plots for monazites define broad isochrons, with cores indicating a rather imprecise age of 1913±260 Ma (MSWD=0.80) and late Neoproterozoic/Cambrian cores as well as thin rims yielding a well-defined isochron with an age of 557±19 Ma (MSWD=0.82). SIMS U–Pb isotopic data on zircons from the garnet–biotite gneiss yield a combined core/rim imprecise discordia line between 2106±37 Ma and 524±150 Ma. The data indicate Palaeoproterozoic zircon formation with later partial or non-uniform Pb loss during the late Neoproterozoic/Cambrian tectonothermal event. The combined electron probe and SIMS data from the metapelite and garnet–biotite gneiss at Chittikara indicate that the older zircons preserved in the finer-grained metapelite protolith have heterogeneous detrital sources, whereas the more arenaceous protolith of the garnet–biotite gniess was sourced from a single-aged terrane. Our data suggest that the metasedimentary belts in southern India may have formed part of an extensive late Neoproterozoic sedimentary basin during the final amalgamation of the Gondwana supercontinent.M. Santosh, A. S. Collins, T. Morimoto and K. Yokoyam

    Long-range correlations and fractal dynamics in C. elegans: changes with aging and stress

    Full text link
    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similarly to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.Comment: Accepted for publication in Physical Review

    Unusual Low-Temperature Phase in VO2_2 Nanoparticles

    Full text link
    We present a systematic investigation of the crystal and electronic structure and the magnetic properties above and below the metal-insulator transition of ball-milled VO2_2 nanoparticles and VO2_2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, O KK x-ray absorption spectroscopy, V L3L_3 resonant inelastic x-ray scattering, and magnetic susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1ga_{1g} state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.Comment: 7 pages, 8 figures, 2 table

    Analysis of Magnetization Reversal Process of Nd-Fe-B Sintered Magnets by Magnetic Domain Observation Using Kerr Microscope

    Get PDF
    We used a Kerr microscope, image processing, and photo editing to clarify magnetization reversal and its propagation in a sintered Nd-Fe-B magnet. Magnetic domain change was observed when a dc field from +20 to 20 kOe was applied to a sintered Nd-Fe-B magnet. Simultaneous magnetization reversal in several grains along the easy axis direction and its propagation to neighboring grains occurred. This indicates that the nucleation field in a grain and magnetic interaction between grains are important controlling factors of the coercivity of sintered Nd-Fe-B magnets
    corecore