563 research outputs found
Vision-Based Structural Monitoring: Application to a Medium-Span Post-Tensioned Concrete Bridge under Vehicular Traffic
Video processing for structural monitoring has attracted much attention in recent years thanks to the possibility of measuring displacement time histories in the absence of stationary points close to the structure, using hardware that is simple to operate and with accessible costs. Experimental studies show a unanimous consensus on the potentialities of vision-based monitoring to provide accurate results that can be equivalent to those obtained from accelerometers and displacement transducers. However, past studies mostly involved steel bridges and footbridges while very few applications can be found for concrete bridges, characterised by a stiffer response with lower displacement magnitudes and different frequency contents of their dynamic behaviour. Accordingly, the attention of this experimental study is focused on the application of a vision-based structural monitoring system to a medium-span, post-tensioned, simply supported concrete bridge, a very common typology in many road networks. The objective is to provide evidence on the quality of the results that could be obtained using vision-based monitoring, understanding the role and influence on the accuracy of the measurements of various parameters relevant to the hardware settings and target geometry, highlighting possible difficulties, and providing practical recommendations to achieve optimal results
Design of a 7.5 kW Dual Active Bridge Converter in 650 V GaN Technology for Charging Applications
High-voltage GaN switches offer low conduction and commutation losses compared with their Si counterparts, enabling the development of high-efficiency switching-mode DC-DC converters with increased switching frequency, faster dynamics, and more compact dimensions. Nonetheless, the potential of GaN switches can be fully exploited only by means of accurate simulations, optimal switch driving, suitable converter topology, accurate component selection, PCB layout optimization, and fast digital converter control. This paper describes the detailed design, simulation, and implementation of an air-cooled, 7.5 kW, dual active bridge converter exploiting commercial 650 V GaN switches, a compact planar transformer, and low ESL/ESR metal film capacitors. The isolated bidirectional converter operates at a 200 kHz switching frequency, with an output voltage range of 200-500 V at nominal 400 V input voltage, and a maximum output current of 28 A, with a wide full-power ZVS region. The overall efficiency at full power is 98.2%. This converter was developed in particular for battery charging applications, when bidirectional power flow is required
Preliminary results in the automated detection of operational modal properties of the Portico Varano in the Camerino Ducal Palace
Portico Varano in the Ducal Palace of Camerino (Italy) is a renaissance monumental quadriporticus that was damaged by the 2016 Central Italy seismic sequence. Within the field activities for saving cultural heritage foreseen within a recent European research project named ARCH, a long-term monitoring system, comprising different types of sensors, such as accelerometers, displacement transducers, environmental sensors, and a weather station, was set up to achieve comprehensive measures of its operational behaviour and the evolution of the damage. The monitoring system, installed in October 2020, is currently operating, providing valuable information on the experimentally observed dynamic behaviour, also considering changes in the environmental conditions.
Starting from the results of the dynamic characterization of the structure and after the optimization of the position of the sensors, this paper shows and discusses the efforts made to track over time the modal characteristics of the Portico Varano in order to detect changes in its conditions. In addition, a procedure has been proposed and implemented combining information available from Italian National Institute of Geophysics and Volcanology (INGV) to identify recorded data related to seismic events relevant to operational conditions
Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus.
The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)-actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross-reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2-cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli-like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development
Temperature increase inside LED-based illuminators for in vitro aPDT photodamage studies
Abstract Antimicrobial PhotoDynamic Therapy (aPDT) is an emerging strategy aimed at the eradication of bacterial infections, with a special focus on antibiotic-resistant bacteria. This method is easy to apply, not expensive and particularly interesting in case of bacteria that spontaneously produce the required photosensitizers. In the framework of a project aimed at the development of an ingestible pill for the application of aPDT to gastric infections by Helicobacter pylori, a LED-based illuminating prototype (LED-BIP) was purposely designed in order to evaluate the photodamage induced by light of different wavelengths on porphyrin-producing bacteria. This short paper reports about temperature tests performed to assess the maximum exposure time and light dose that can be administered to bacterial cultures inside LED-BIP without reaching temperatures exceeding the physiological range
Respiratory Effects of Exposure to Traffic-Related Air Pollutants During Exercise
Traffic-related air pollution (TRAP) is increasing worldwide. Habitual physical activity is known to prevent cardiorespiratory diseases and mortality, but whether exposure to TRAP during exercise affects respiratory health is still uncertain. Exercise causes inflammatory changes in the airways, and its interaction with the effects of TRAP or ozone might be detrimental, for both athletes exercising outdoor and urban active commuters. In this Mini-Review, we summarize the literature on the effects of exposure to TRAP and/or ozone during exercise on lung function, respiratory symptoms, performance, and biomarkers. Ozone negatively affected pulmonary function after exercise, especially after combined exposure to ozone and diesel exhaust (DE). Spirometric changes after exercise during exposure to particulate matter and ultrafine particles suggest a decrease in lung function, especially in patients with chronic obstructive pulmonary disease. Ozone frequently caused respiratory symptoms during exercise. Women showed decreased exercise performance and higher symptom prevalence than men during TRAP exposure. However, performance was analyzed in few studies. To date, research has not identified reliable biomarkers of TRAP-related lung damage useful for monitoring athletes' health, except in scarce studies on airway cells obtained by induced sputum or bronchoalveolar lavage. In conclusion, despite partly counteracted by the positive effects of habitual exercise, the negative effects of TRAP exposure to pollutants during exercise are hard to assess: outdoor exercise is a complex model, for multiple and variable exposures to air pollutants and pollutant concentrations. Further studies are needed to identify pollutant and/or time thresholds for performing safe outdoor exercise in cities
MITOCHONDRIAL MASS, DISTRIBUTION AND ACTIVITY DURING SEA URCHIN OOGENESIS
The sea urchin egg is a favourite model for studies of the molecular biology and physiology of fertilization and early development, yet we know sparingly little of its oocytes and of mitochondria behaviour during oogenesis.
The process of oogenesis in most echinoderms is asynchronous so each ovary lobe has hundreds of oocytes at all stages of development. At the beginning of oogenesis, the oocyte is about 10 \ub5m in diameter. During the vitellogenic phase of oogenesis, the oocyte accumulate yolk proteins and grow to ten times their original size to 80 to 100 \ub5m in sea urchins. The oocyte, arrested at the prophase of the first meiotic division, is apparent with its large nucleus, the germinal vesicle (GV), containing a prominent nucleolus. Echinoid (such as sea urchin) and Holothurian oocytes complete meiotic maturation prior to fertilization, distinct from other echinoderms and almost all others animals. As maturation progresses, it occurs the GV breaks down (GVBD). These eggs may then be stored for weeks to months within the female before they are spawned, and the proportion of eggs in the ovary increases from early to late season, as the numbers of oocytes decline [1].
Mitochondria, generally known as the powerhouses of eukaryotic cells, play a primary role in cellular energetic metabolism, homeostasis and death. These organelles, with their multicopy genome maternally inherited, are directly involved at several levels in the reproductive process since their functional status influences the quality of oocytes and contributes to the process of fertilization and embryonic development.
It has been demonstrated that the number of maternal mitochondria is sufficient to support development until late stages without new synthesis of mitochondrial DNA or production of new organelles [2]. During embryogenesis mitochondrial mass does not change, whereas mitochondrial respiration increases [3]. The behaviour of these organelles during oogenesis remains at moment unclear.
In the present paper we studied, by Confocal Laser Scanning Microscopy tecnologies (CLSM), the mass and distribution, the activity and the DNA content of sea urchin Paracentrotus lividus mitochondria during oogenesis, by in vivo incubating oocytes of different size with cell-permeant probes specific for mitochondria and for DNA and by immunodetection of hsp60 chaperonine, a well known mitochondrial marker.
In particular the oocytes were grouped in six classes: < 10, 20/30, 40/50, 60/70, 80/90 \ub5m, and 90 \ub5m ovulated egg, on the base of diameters. Microscopic observations were performed capturing 2 \ub5m thick layers of oocytes. Of the several thousands oocytes we observed, 20 for each different oogenesis stage were analyzed and processed. In order to interpret results and to draw unequivocal conclusions, we measured by IMAGE J software analysis the intensity values of fluorescent signals, as suggested in Agnello et al 2008 [4].
The mitochondria of oocytes with a diameter between 20 and 70 \ub5m, appeared to give rise to clusters that disappear in that of 80 \ub5m. In the oocytes between 60 and 90 \ub5m the red fluorescence seems to be more evident around the germinal vesicle (the merge tends to red), suggesting an increasing oxidative phosphorylation activity.
In the ovulated eggs, red and green fluorescence are uniformly distributed suggesting that mitochondria are dispersed in the cytoplasm. In addition the merge of green and red colours shows that the whole mitochondrial population is consuming oxygen at the same level (the resulting colours tends to yellow), figure 1.
In order to calculate the total mitochondrial mass and activity we integrated the values of pixel intensities for all captured sections and used the arithmetic means to draw a statistical analysis. Results suggest a parallel rise of mitochondrial mass and activity, suggesting that the amount and activity of organelles change remarkably during oogenesis.
Figure 1. shows the distribution of hsp60 protein, detected by immunofluorescence analysis (A), the mitochondrial and genomic DNA, after in vivo incubation with PicoGreen probe (B) and the merge of green and red fluorescence signal, respectively due to mitochondrial mass and activity, after in vivo incubation with Mitotraker Green and Orange (C). The size of the oocytes reported is 80 \ub5m.
Results suggest that mitochondria are actively duplicating and that mitochondrial DNA is replicating during the different oogenesis phases. It is noteworthy that around the germinal vesicle, especially in the larger oocytes, next to the germinal vesicle breakdown, the organelles are more active in oxygen consumption, probably due to the major energetic needing in this key moment of gametogenesis.
[1] Wessel G.M., Voronina E., and Brooks J.M. (2004) Obtaining and handling echinoderm oocytes. In \u201cMethods in Cell Biology\u201d, Elsevier. Vol.74, Chapter 5, pp. 87-114.
[2] Matsumoto L., Kasamatsu H., Pik\ub4o L. and Vinograd J. (1974) Mitochondrial DNA replication in sea urchin oocytes. J. Cell Biol. 63: 146\u2013159.
[3] Morici G., Agnello M., Spagnolo F., Roccheri M.C., Di Liegro C.M. and Rinaldi A.M. (2007) Confocal microscopy study of the distribution, content and activity of mitochondria during Paracentrotus lividus development. Journal of Microscopy. 228: 165-173.
[4] Agnello M., Morici G., Rinaldi A.M. (2008) A method for measuring mitochondrial mass and activity . Cytotechnology. 56: 145-149.
Maria Carmela Roccheri: Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche. Universit\ue0 degli Studi di Palermo, Viale delle Scienze Ed.16, Palermo, Italy; tel: 09123897414;
e-mail: [email protected]
Electro dynamic model of eddy currents in EU DEMO TF coil casing during major plasma disruption
The conceptual design of the EU DEMO reactor is currently ongoing within the EUROfusion consortium. Many different fault transients must be considered and carefully analyzed in the design phase; one of the most severe is the major plasma disruption (MPD), which causes several drawbacks on the magnet system. During a disruption, the plasma current decreases extremely fast, causing a fast variation of the magnetic field, which in turn induces an electric field. In presence of conductive materials, e.g., coil casing and vacuum vessel (VV), the electric field induces large eddy currents which deposit power by Joule effect. The conductive regions are tightly coupled on different timescales through the magnetic field induced by the eddy currents: the eddy currents in the VV influence the magnetic field evolution in the TF coil casing, thus affecting the power deposition in the latter. The aim of this work is the evaluation of the power deposited within the TF coil casing during a major plasma disruption due to eddy currents. The power deposition has been evaluated by means of the 3D-FOX, a finite element (FE) tool developed at Politecnico di Torino. The computed power deposition is used as input to the thermal-hydraulic (TH) simulation, performed with the 4C code, with the aim of assessing the erosion of the temperature margin given by MPD
- …