16 research outputs found

    TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation

    Get PDF
    TRIM proteins contribute to selective autophagy, a process whereby cells target specific cargo for autophagic degradation. In a previously reported screen, TRIM17 acted as a prominent inhibitor of bulk autophagy, unlike the majority of TRIMs, which had positive roles. Nevertheless, TRIM17 showed biochemical hallmarks of autophagy-inducing TRIMs. To explain this paradox, here, we investigated how TRIM17 inhibits selective autophagic degradation of a subset of targets while promoting degradation of others. We traced the inhibitory function of TRIM17 to its actions on the anti-autophagy protein Mcl-1, which associates with and inactivates Beclin 1. TRIM17 expression stabilized Mcl-1–Beclin-1 complexes. Despite its ability to inhibit certain types of selective autophagy, TRIM17 promoted the removal of midbodies, remnants of the cell division machinery that are known autophagy targets. The selective loss of anti-autophagy Mcl-1 from TRIM17–Beclin-1 complexes at midbodies correlated with the ability of TRIM17 to promote midbody removal. This study further expands the roles of TRIMs in regulating selective autophagy by showing that a single TRIM can, depending upon a target, either positively or negatively regulate autophagy.Peer reviewe

    Commensal and Pathogenic Bacteria Indirectly Induce IL-22 but Not IFNγ Production From Human Colonic ILC3s via Multiple Mechanisms

    Get PDF
    Innate lymphoid cells (ILCs) are a diverse family of cells that play critical roles in mucosal immunity. One subset of the ILC family, Group 3 ILCs (ILC3s), has been shown to aid in gut homeostasis through the production of IL-22. IL-22 promotes gut homeostasis through its functional effect on the epithelial barrier. When gut epithelial barrier integrity is compromised, such as in Human Immunodeficiency Virus (HIV) infection and inflammatory bowel disease (IBD), microbes from the gut lumen translocate into the lamina propria, inducing a multitude of potentially pathogenic immune responses. In murine models of bacterial infection, there is evidence that bacteria can induce pro-inflammatory IFNγ production in ILC3s. However, the impact of diverse translocating bacteria, particularly commensal bacteria, in dictating IFNγ versus IL-22 production by human gut ILC3s remains unclear. Here, we utilized an in vitro human lamina propria mononuclear cell (LPMC) model to evaluate ILC3 cytokine production in response to a panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria and determined potential mechanisms by which these cytokine responses were induced. The percentages of IL-22-producing ILC3s, but not IFNγ-producing ILC3s, were significantly increased after LPMC exposure to both Gram-positive and Gram-negative commensal or pathogenic bacterial stimuli. Stimulation of IL-22 production from ILC3s was not through direct recognition of bacterial antigen by ILC3s, but rather required the help of accessory cells within the LPMC population. CD11c+ myeloid dendritic cells generated IL-23 and IL-1β in response to enteric bacteria and contributed to ILC3 production of IL-22. Furthermore, ligation of the natural cytotoxicity receptor NKp44 on ILC3s in response to bacteria stimulation also significantly increased the percentage of IL-22-producing ILC3s. Overall, these data demonstrate that human gut microbiota, including commensal bacteria, indirectly modulate colonic ILC3 function to induce IL-22, but additional signals are likely required to induce IFNγ production by colonic ILC3s in the setting of inflammation and microbial translocation

    Defining Natural History: Assessment of the Ability of College Students to Aid in Characterizing Clinical Progression of Niemann-Pick Disease, Type C

    Get PDF
    Niemann-Pick Disease, type C (NPC) is a fatal, neurodegenerative, lysosomal storage disorder. It is a rare disease with broad phenotypic spectrum and variable age of onset. These issues make it difficult to develop a universally accepted clinical outcome measure to assess urgently needed therapies. To this end, clinical investigators have defined emerging, disease severity scales. The average time from initial symptom to diagnosis is approximately 4 years. Further, some patients may not travel to specialized clinical centers even after diagnosis. We were therefore interested in investigating whether appropriately trained, community-based assessment of patient records could assist in defining disease progression using clinical severity scores. In this study we evolved a secure, step wise process to show that pre-existing medical records may be correctly assessed by non-clinical practitioners trained to quantify disease progression. Sixty-four undergraduate students at the University of Notre Dame were expertly trained in clinical disease assessment and recognition of major and minor symptoms of NPC. Seven clinical records, randomly selected from a total of thirty seven used to establish a leading clinical severity scale, were correctly assessed to show expected characteristics of linear disease progression. Student assessment of two new records donated by NPC families to our study also revealed linear progression of disease, but both showed accelerated disease progression, relative to the current severity scale, especially at the later stages. Together, these data suggest that college students may be trained in assessment of patient records, and thus provide insight into the natural history of a disease

    Mechanisms of Innate Immune Regulation of Dermonecrosis during Staphylococcus aureus skin infections

    No full text
    S. aureus is the dominant cause of skin and soft tissue infections (SSTIs) in humans. The importance of S. aureus as the primary cause of skin infections has increased exponentially over the last few decades since the emergence of resistance to β-lactam antibiotics. Furthermore, the rise of methicillin-resistant S. aureus (MRSA) strains has led to hospitals stays, increased financial burden and increased mortality. A significant proportion of MRSA infections have been attributed to community-acquired strains (CA-MRSA), specifically the USA300 isolates, which can cause deadly disease in otherwise healthy individuals. Due to the increase in antibiotic resistance and the lack of an effective vaccine against S. aureus, there is a limit in current treatment options available for infected patients and a need for better therapeutics that limit resistance while fighting infection. In order to design better therapeutics to combat S. aureus, it is imperative to understand the host innate immune factors that are protective against S. aureus. Our work focuses on the role of the scavenger receptor CD36 in regulation of the host inflammatory response during S. aureus skin infection, sex bias in susceptibility to infection with S. aureus, and the role of estrogen in host defense during infection. This work is especially important for patient populations which show increased susceptibility to infection due to dysfunctional innate immune mechanisms

    Nox2 Modification of LDL Is Essential for Optimal Apolipoprotein B-mediated Control of <em>agr</em> Type III <em>Staphylococcus aureus</em> Quorum-sensing

    Get PDF
    <div><p><em>Staphylococcus aureus</em> contains an autoinducing quorum-sensing system encoded within the <em>agr</em> operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within <em>agr</em> has generated four <em>agr</em> specific groups, <em>agr</em> I–IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives <em>agr</em> signaling. Because <em>agr</em> signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize <em>agr</em> signaling. We determined whether two host defense factors that inhibit AIP1-induced <em>agr</em>I signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced <em>agr</em>III signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against <em>agr</em>III signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against <em>S. aureus agr</em>III infection by binding the secreted signaling peptide, AIP3, and preventing expression of the <em>agr</em>-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes <em>agr</em> signaling by all four <em>agr</em> alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against <em>agr</em> signaling. These data reveal a novel role for oxLDL in host defense against <em>S. aureus</em> quorum-sensing signaling.</p> </div
    corecore