61 research outputs found

    Identification of five genetic variants as novel determinants of type 2 diabetes mellitus in Japanese by exome-wide association studies

    Get PDF
    We performed exome-wide association studies to identify single nucleotide polymorphisms that either influence fasting plasma glucose level or blood hemoglobin A1c content or confer susceptibility to type 2 diabetes mellitus in Japanese. Exome-wide association studies were performed with the use of Illumina Human Exome-12 DNA Analysis or Infinium Exome-24 BeadChip arrays and with 11,729 or 8635 subjects for fasting plasma glucose level or blood hemoglobin A1c content, respectively, or with 14,023 subjects for type 2 diabetes mellitus (3573 cases, 10,450 controls). The relation of genotypes of 41,265 polymorphisms to fasting plasma glucose level or blood hemoglobin A1c content was examined by linear regression analysis. After Bonferroni’s correction, 41 and 17 polymorphisms were significantly (P < 1.21 × 10−6) associated with fasting plasma glucose level or blood hemoglobin A1c content, respectively, with two polymorphisms (rs139421991, rs189305583) being associated with both. Examination of the relation of allele frequencies to type 2 diabetes mellitus with Fisher’s exact test revealed that 87 polymorphisms were significantly (P < 1.21 × 10−6) associated with type 2 diabetes mellitus. Subsequent multivariable logistic regression analysis with adjustment for age and sex showed that four polymorphisms (rs138313632, rs76974938, rs139012426, rs147317864) were significantly (P < 1.44 × 10−4) associated with type 2 diabetes mellitus, with rs138313632 and rs139012426 also being associated with fasting plasma glucose and rs76974938 with blood hemoglobin A1c. Five polymorphisms—rs139421991 of CAT, rs189305583 of PDCL2, rs138313632 of RUFY1, rs139012426 of LOC100505549, and rs76974938 of C21orf59—may be novel determinants of type 2 diabetes mellitus

    Identification of TNFSF13, SPATC1L, SLC22A25 and SALL4 as novel susceptibility loci for atrial fibrillation by an exome‑wide association study

    Get PDF
    An exome‑wide association study (EWAS) was performed to identify genetic variants, particularly low‑frequency or rare coding variants with a moderate to large effect size, that confer susceptibility to atrial fibrillation in Japanese. The EWAS for atrial fibrillation was performed with 13,166 subjects (884 patients with atrial fibrillation and 12,282 controls) using an Illumina HumanExome‑12 DNA Analysis BeadChip or Infinium Exome‑24 BeadChip arrays. The association of atrial fibrillation with allele frequencies of 41,243 single nucleotide polymorphisms (SNPs) that passed quality control was examined with Fisher\u27s exact test. Based on Bonferroni\u27s correction, a P<1.21x10‑6 was considered statistically significant. The EWAS for atrial fibrillation revealed that 122 SNPs were significantly associated with this condition. The association of the identified SNPs to atrial fibrillation was further examined by multivariable logistic regression analysis with adjustment for age, sex and the prevalence of hypertension. Eight SNPs were related (P<0.01) to atrial fibrillation, among which three polymorphisms, rs11552708 [G/A (G67R)]of TNF superfamily member 13 (TNFSF13; dominant model; P=9.36x10‑9; odds ratio, 0.58), rs113710653 [C/T (E231 K)] of spermatogenesis and centriole associated 1 like (SPATC1L; dominant model; P=1.09x10‑5; odds ratio, 3.27), and rs11231397 [G/C (R300T)] of solute carrier family 22 member 25 (SLC22A25; additive model; P=3.71x10‑5; odds ratio, 1.77), were significantly (P<1.02x10‑4) associated with this condition. The minor T allele of rs113710653 and the minor C allele of rs11231397 were risk factors for atrial fibrillation, whereas the minor A allele of rs11552708 was protective against this condition. In addition, rs77538589 [C/T (G117R)] of SALL4 exhibited a tendency to be associated with atrial fibrillation (dominant model; P=0.0002; odds ratio, 1.88), with the minor T allele representing a risk factor for this condition. TNFSF13, SPATC1L, SLC22A25 and SALL4 may thus be novel susceptibility loci for atrial fibrillation in the Japanese population

    Identification of rs7350481 at chromosome 11q23.3 as a novel susceptibility locus for metabolic syndrome in Japanese individuals by an exome-wide association study

    Get PDF
    We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher’s exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10–6), or metabolic syndrome (P <1.20 × 10–6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms—rs7350481 (C/T) at chromosome 11q23.3—also being significantly (P < 3.13 × 10–4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively

    Clinical outcomes for olfactory neuroblastoma

    Get PDF
    BackgroundOlfactory neuroblastoma (ONB) is a rare malignant tumor arising from the olfactory neuroepithelium. The standard of care for ONB is surgical resection; however, detailed treatment protocols vary by institution. Our treatment protocol consists of endoscopic skull base surgery (ESBS) for endoscopically resectable cases and induction chemotherapy followed by craniotomy combined with ESBS for locally advanced cases, with postoperative radiotherapy performed for all cases. Chemoradiotherapy (CRT) is performed in unresectable cases. In this study, we evaluate our treatment protocol and outcomes for ONB.MethodsA retrospective review of patients with ONB was conducted. Outcomes included survival outcomes and perioperative data.ResultsFifteen patients (53.6%) underwent ESBS, 12 (42.9%) underwent craniotomy combined with ESBS, and 1 (3.6%) received CRT. The 5- and 10-year overall survival rates for all patients were 92.9% and 82.5%, respectively, with a median follow-up period of 81 months. The 5- and 10-year disease-free survival rates were 77.3% and 70.3%, respectively, and the 5- and 10-year local control rates were 88.2% and 80.2%, respectively. Patients undergoing ESBS demonstrated a significantly shorter operating time, period from operation to ambulation, hospitalization period, and less blood loss than those undergoing craniotomy combined with ESBS.ConclusionOur treatment protocol was found to afford favorable outcomes. Patients who underwent endoscopic resection showed lower complication rates and better perioperative data than those who underwent craniotomy combined with ESBS. With appropriate case selection, ESBS is considered a useful approach for ONB

    Identification of eight genetic variants as novel determinants of dyslipidemia in Japanese by exome-wide association studies

    Get PDF
    We have performed exome-wide association studies to identify single nucleotide polymorphisms that influence serum concentrations of triglycerides, high density lipoprotein (HDL)–cholesterol, or low density lipoprotein (LDL)–cholesterol or confer susceptibility to hypertriglyceridemia, hypo–HDL-cholesterolemia, or hyper–LDL-cholesterolemia in Japanese. Exome-wide association studies for serum triglycerides (13,414 subjects), HDL-cholesterol (14,119 subjects), LDL-cholesterol (13,577 subjects), hypertriglyceridemia (4742 cases, 8672 controls), hypo–HDL-cholesterolemia (2646 cases, 11,473 controls), and hyper–LDL-cholesterolemia (4489 cases, 9088 controls) were performed with HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. Twenty-four, 69, or 32 loci were significantly (P < 1.21 × 10–6) associated with serum triglycerides, HDL-cholesterol, or LDL-cholesterol, respectively, with 13, 16, or 9 of these loci having previously been associated with triglyceride-, HDL-cholesterol–, or LDL-cholesterol–related traits, respectively. Two single nucleotide polymorphisms (rs10790162, rs7350481) were significantly related to both serum triglycerides and hypertriglyceridemia; three polymorphisms (rs146515657, rs147317864, rs12229654) were significantly related to both serum HDL-cholesterol and hypo–HDL-cholesterolemia; and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) were significantly related to both serum LDL-cholesterol and hyper–LDL-cholesterolemia. Among polymorphisms identified in the present study, two polymorphisms (rs146515657, rs147317864) may be novel determinants of hypo–HDL-cholesterolemia, and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) may be new determinants of hyper–LDL-cholesterolemia. In addition, 12, 61, 23, or 3 polymorphisms may be new determinants of the serum triglyceride, HDL-cholesterol, or LDL-cholesterol concentrations or of hyper–LDL-cholesterolemia, respectively

    Identification of STXBP2 as a novel susceptibility locus for myocardial infarction in Japanese individuals by an exome-wide association study

    Get PDF
    We performed exome-wide association studies to identify genetic variants—in particular, low-frequency variants with a large effect size—that confer susceptibility to coronary artery disease or myocardial infarction in Japanese. The exome-wide association studies were performed with 12,698 individuals (3488 subjects with coronary artery disease including 2438 with myocardial infarction, 9210 controls) and with the use of the Illumina HumanExome-12 DNA Analysis or Infinium Exome-24 BeadChip. The relation of allele frequencies for 41,339 single nucleotide polymorphisms that passed quality control to coronary artery disease or myocardial infarction was examined with Fisher’s exact test. The exome-wide association study for coronary artery disease revealed that 126 single nucleotide polymorphisms were significantly (P <1.21 × 10–6) associated with this condition. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension, diabetes mellitus, and dyslipidemia showed that six of these polymorphisms were related (P < 0.01) to coronary artery disease, but none was significantly (P < 9.92 × 10–5) associated with this condition. The exome-wide association study for myocardial infarction revealed that 114 single nucleotide polymorphisms were significantly (P <1.21 × 10–6) associated with this condition. Multivariable logistic regression analysis with adjustment for covariates revealed that nine of these polymorphisms were related (P < 0.01) to myocardial infarction. Among these nine polymorphisms, rs188212047 [G/T (L212F)] of STXBP2 was significantly (dominant model; P = 4.84 × 10–8; odds ratio, 2.94) associated with myocardial infarction. STXBP2 may thus be a novel susceptibility locus for myocardial infarction in Japanese

    Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies

    Get PDF
    We performed an exome-wide association study (EWAS) to identify genetic variants - in particular, low‑frequency or rare variants with a moderate to large effect size - that confer susceptibility to aortic aneurysm with 8,782 Japanese subjects (456 patients with aortic aneurysm, 8,326 control individuals) and with the use of Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The correlation of allele frequencies for 41,432 single nucleotide polymorphisms (SNPs) that passed quality control to aortic aneurysm was examined with Fisher\u27s exact test. Based on Bonferroni\u27s correction, a P-value of <1.21x10-6 was considered statistically significant. The EWAS revealed 59 SNPs that were significantly associated with aortic aneurysm. None of these SNPs was significantly (P<2.12x10-4) associated with aortic aneurysm by multivariable logistic regression analysis with adjustment for age, gender and hypertension, although 8 SNPs were related (P<0.05) to this condition. Examination of the correlation of these latter 8 SNPs to true or dissecting aortic aneurysm separately showed that rs1465567 [T/C (W229R)] of the EGF-like, fibronectin type III, and laminin G domains gene (EGFLAM) (dominant model; P=0.0014; odds ratio, 1.63) was significantly (P<0.0016) associated with true aortic aneurysm. We next performed EWASs for true or dissecting aortic aneurysm separately and found that 45 and 19 SNPs were significantly associated with these conditions, respectively. Multivariable logistic regression analysis with adjustment for covariates revealed that rs113710653 [C/T (E231K)] of the spermatogenesis- and centriole associated 1-like gene (SPATC1L) (dominant model; P=0.0002; odds ratio, 5.32) and rs143881017 [C/T (R140H)] of the ribonuclease A family member 13 gene (RNASE13) (dominant model; P=0.0006; odds ratio, 5.77) were significantly (P<2.78x10-4 or P<6.58x10-4, respectively) associated with true or dissecting aortic aneurysm, respectively. EGFLAM and SPATC1L may thus be susceptibility loci for true aortic aneurysm and RNASE13 may be such a locus for dissecting aneurysm in Japanese individuals

    Common Variants in a Novel Gene, FONG on Chromosome 2q33.1 Confer Risk of Osteoporosis in Japanese

    Get PDF
    Osteoporosis is a common disease characterized by low bone mass, decreased bone quality and increased predisposition to fracture. Genetic factors have been implicated in its etiology; however, the specific genes related to susceptibility to osteoporosis are not entirely known. To detect susceptibility genes for osteoporosis, we conducted a genome-wide association study in Japanese using ∼270,000 SNPs in 1,747 subjects (190 cases and 1,557 controls) followed by multiple levels of replication of the association using a total of ∼5,000 subjects (2,092 cases and 3,114 controls). Through these staged association studies followed by resequencing and linkage disequilibrium mapping, we identified a single nucleotide polymorphism (SNP), rs7605378 associated with osteoporosis. (combined P = 1.51×10−8, odds ratio = 1.25). This SNP is in a previously unknown gene on chromosome 2q33.1, FONG. FONG is predicted to encode a 147 amino-acid protein with a formiminotransferase domain in its N-terminal (FTCD_N domain) and is ubiquitously expressed in various tissues including bone. Our findings would give a new insight into osteoporosis etiology and pathogenesis
    corecore