50 research outputs found

    Cell viabilities and biodegradation rates of DNA/protamine complexes with two different molecular weights of DNA.

    Get PDF
    Two types of DNA/protamine complexes were prepared from protamine sulfate and 7000 base pair (bp) DNA or original DNA to investigate the effect of the molecular weight of DNA on zeta potential, cell viability, flowability, soft tissue response, and biodegradation rate. The 7000 bp DNA/protamine complex had a negative charge while the original DNA/protamine complex had a positive charge. The cell viabilities (90.4-106.8%) of these complexes were close to each other. The 7000 bp DNA/protamine complex became a softer dough than that of the original DNA/complex when both were kneaded with water. In vivo, the original DNA/protamine complex showed a milder tissue response. The original DNA/protamine complex almost disappeared 30 days after implantation. The 7000 bp DNA/complex disappeared approximately 2 weeks after implantation and areas where samples were implanted became empty. Thereafter, the empty space was gradually replaced by new soft tissues. The original DNA/protamine complex showed low intercalation and groove binding ratios of daunorubicin hydrochloride. Results indicate that high DNA condensation by cationic protamine protected the penetration of degradation enzymes into these complexes. It was found that a high molecular weight of DNA reduced the biodegradation rate and flowability. This study suggests that DNA/protamine complexes could be candidates for biomaterials that control biodegradation rates and flowability.福岡歯科大学2013年

    Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration.

    Get PDF
    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration.福岡歯科大学2016年

    CRISPR-Cas9システムを用いた味覚受容体発現調節物質のスクリーニング系の開発

    Get PDF
    Taste recognition mediated by taste receptors is critical for the survival of animals in nature and is an important determinant of nutritional status and quality of life in humans. However, many factors including aging, diabetes, zinc deficiency, infection with influenza or cold viruses, and chemotherapy can trigger dysgeusia, for which a standard treatment has not been established. We here established an engineered strain of medaka (Oryzias latipes) that expresses green fluorescent protein (GFP) from the endogenous taste 1 receptor 3 (T1R3) gene locus with the use of the CRISPR-Cas9 system. This T1R3-GFP knock-in (KI) strain allows direct visualization of expression from this locus by monitoring of GFP fluorescence. The pattern of GFP expression in the T1R3-GFP KI fish thus mimicked that of endogenous T1R3 gene expression. Furthermore, exposure of T1R3-GFP KI medaka to water containing monosodium glutamate or the anticancer agent 5-fluorouracil resulted in an increase or decrease, respectively, in GFP fluorescence intensity, effects that also recapitulated those on T1R3 mRNA abundance. Finally, screening for agents that affect GFP fluorescence intensity in T1R3-GFP KI medaka identified tryptophan as an amino acid that increases T1R3 gene expression. The establishment of this screening system for taste receptor expression in medaka provides a new tool for the development of potential therapeutic agents for dysgeusia

    Strain-induced creation and switching of anion vacancy layers in perovskite oxynitrides

    Get PDF
    Using strain to control oxynitride properties. 京都大学プレスリリース. 2020-12-01.原子空孔の配列を制御する新手法の発見. 京都大学プレスリリース. 2020-12-02.Perovskite oxides can host various anion-vacancy orders, which greatly change their properties, but the order pattern is still difficult to manipulate. Separately, lattice strain between thin film oxides and a substrate induces improved functions and novel states of matter, while little attention has been paid to changes in chemical composition. Here we combine these two aspects to achieve strain-induced creation and switching of anion-vacancy patterns in perovskite films. Epitaxial SrVO3 films are topochemically converted to anion-deficient oxynitrides by ammonia treatment, where the direction or periodicity of defect planes is altered depending on the substrate employed, unlike the known change in crystal orientation. First-principles calculations verified its biaxial strain effect. Like oxide heterostructures, the oxynitride has a superlattice of insulating and metallic blocks. Given the abundance of perovskite families, this study provides new opportunities to design superlattices by chemically modifying simple perovskite oxides with tunable anion-vacancy patterns through epitaxial lattice strain

    The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies

    Get PDF
    We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma rays) on Mrk421 between January 2009 and June 2009, which included VLBA, F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. The harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. The highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.Comment: Accepted for publication in A&A, 18 pages, 14 figures (v2 has a small modification in the acknowledgments, and also corrects a typo in the field "author" in the metadata

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    An infant with refractory cytomegalovirus-induced thrombocytopenia

    Get PDF
    The present case underscores the importance of considering the association of severe thrombocytopenia or immune thrombocytopenia with cytomegalovirus (CMV) infection because CMV-induced thrombocytopenia occasionally requires antiviral therapy

    Salmon DNA Accelerates Bone Regeneration by Inducing Osteoblast Migration.

    No full text
    The initial step of bone regeneration requires the migration of osteogenic cells to defective sites. Our previous studies suggest that a salmon DNA-based scaffold can promote the bone regeneration of calvarial defects in rats. We speculate that the salmon DNA may possess osteoinductive properties, including the homing of migrating osteogenic cells. In the present study, we investigated the influence of the salmon DNA on osteoblastic differentiation and induction of osteoblast migration using MG63 cells (human preosteoblasts) in vitro. Moreover, we analyzed the bone regeneration of a critical-sized in vivo calvarial bone defect (CSD) model in rats. The salmon DNA enhanced both mRNA and protein expression of the osteogenesis-related factors, runt-related transcription factor 2 (Runx2), alkaline phosphatase, and osterix (OSX) in the MG63 cells, compared with the cultivation using osteogenic induction medium alone. From the histochemical and immunohistochemical assays using frozen sections of the bone defects from animals that were implanted with DNA disks, many cells were found to express aldehyde dehydrogenase 1, one of the markers for mesenchymal stem cells. In addition, OSX was observed in the replaced connective tissue of the bone defects. These findings indicate that the DNA induced the migration and accumulation of osteogenic cells to the regenerative tissue. Furthermore, an in vitro transwell migration assay showed that the addition of DNA enhanced an induction of osteoblast migration, compared with the medium alone. The implantation of the DNA disks promoted bone regeneration in the CSD of rats, compared with that of collagen disks. These results indicate that the salmon DNA enhanced osteoblastic differentiation and induction of migration, resulting in the facilitation of bone regeneration
    corecore