226 research outputs found

    Efficacy of Bidens pilosa Extract against Herpes Simplex Virus Infection In Vitro and In Vivo

    Get PDF
    The development of strains of herpes simplex virus (HSV) resistant to drugs has been reported among the immunocompromised patients. Thus, there is a need to develop new therapeutic agents for HSV infections. We evaluated the anti-HSV activity of Bidens pilosa (B. pilosa), a tropical weed, in tissue culture cells and a mouse model. B. pilosa extract showed potent virucidal activity. It inhibited plaque formation and suppressed virus yield in Vero and RAW 264.7 cells infected with HSV-1 and HSV-2. Both the binding of virus to host cells and penetration of virus into cells were also blocked by B. pilosa. Furthermore, B. pilosa was effective against thymidine kinase-deficient and phosphonoacetate-resistant HSV-1 strains. B. pilosa treatment increased the survival rate of HSV-infected mice and limited the development of skin lesions. Our results indicate that B. pilosa has anti-HSV activity and is thus a potentially useful medical plant for treatment of HSV infection

    Pericardial Effusion in Association With Periodontitis: Case Report and Review of 8 Patients in Literature

    Get PDF
    Periodontal diseases are well-known background for infective endocarditis. Here, we show that pericardial effusion or pericarditis might have origin also in periodontal diseases. An 86-year-old man with well-controlled hypertension and diabetes mellitus developed asymptomatic increase in pericardial effusion. Two weeks previously, he took oral new quinolone antibiotics for a week because he had painful periodontitis along a dental bridge in the mandibular teeth on the right side and presented cheek swelling. The sputum was positive for Streptococcus species. He was healthy and had a small volume of pericardial effusion for the previous 5 years after drug-eluting coronary stents were inserted at the left anterior descending branch 10 years previously. The differential diagnoses listed for pericardial effusion were infection including tuberculosis, autoimmune diseases, and metastatic malignancy. Thoracic to pelvic computed tomographic scan demonstrated no mass lesions, except for pericardial effusion and a small volume of pleural effusion on the left side. Fluorodeoxyglucose positron emission tomography disclosed many spotty uptakes in the pericardial effusion. The patient denied pericardiocentesis, based on his evaluation of the risk of the procedure. He was thus discharged in several days and followed at outpatient clinic. He underwent dental treatment and pericardial effusion resolved completely in a month. He was healthy in 6 years until the last follow-up at the age of 92 years. We also reviewed 8 patients with pericarditis in association with periodontal diseases in the literature to reveal that periodontal diseases would be the background for developing infective pericarditis and also mediastinitis on some occasions

    Anti-adult T-cell leukemia/lymphoma effects of indole-3-carbinol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult T-cell leukemia/lymphoma (ATLL) is a malignancy derived from T cells infected with human T-cell leukemia virus type 1 (HTLV-1), and it is known to be resistant to standard anticancer therapies. Indole-3-carbinol (I3C), a naturally occurring component of <it>Brassica </it>vegetables such as cabbage, broccoli and Brussels sprout, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic and antiestrogenic properties in experimental studies. The aim of this study was to determine the potential anti-ATLL effects of I3C both <it>in vitro </it>and <it>in vivo</it>.</p> <p>Results</p> <p>In the <it>in vitro </it>study, I3C inhibited cell viability of HTLV-1-infected T-cell lines and ATLL cells in a dose-dependent manner. Importantly, I3C did not exert any inhibitory effect on uninfected T-cell lines and normal peripheral blood mononuclear cells. I3C prevented the G<sub>1</sub>/S transition by reducing the expression of cyclin D1, cyclin D2, Cdk4 and Cdk6, and induced apoptosis by reducing the expression of XIAP, survivin and Bcl-2, and by upregulating the expression of Bak. The induced apoptosis was associated with activation of caspase-3, -8 and -9, and poly(ADP-ribose) polymerase cleavage. I3C also suppressed IκBα phosphorylation and JunD expression, resulting in inactivation of NF-κB and AP-1. Inoculation of HTLV-1-infected T cells in mice with severe combined immunodeficiency resulted in tumor growth. The latter was inhibited by treatment with I3C (50 mg/kg/day orally), but not the vehicle control.</p> <p>Conclusion</p> <p>Our preclinical data suggest that I3C could be potentially a useful chemotherapeutic agent for patients with ATLL.</p

    Human T-cell leukemia virus type I infects human lung epithelial cells and induces gene expression of cytokines, chemokines and cell adhesion molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-cell leukemia virus type I (HTLV-I) is associated with pulmonary diseases, characterized by bronchoalveolar lymphocytosis, which correlates with HTLV-I proviral DNA in carriers. HTLV-I Tax seems to be involved in the development of such pulmonary diseases through the local production of inflammatory cytokines and chemokines in T cells. However, little is known about induction of these genes by HTLV-I infection in lung epithelial cells.</p> <p>Results</p> <p>We tested infection of lung epithelial cells by HTLV-I by coculture studies in which A549 alveolar and NCI-H292 tracheal epithelial cell lines were cocultured with MT-2, an HTLV-I-infected T-cell line. Changes in the expression of several cellular genes were assessed by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and flow cytometry. Coculture with MT-2 cells resulted in infection of lung epithelial cells as confirmed by detection of proviral DNA, HTLV-I Tax expression and HTLV-I p19 in the latter cells. Infection was associated with induction of mRNA expression of various cytokines, chemokines and cell adhesion molecule. NF-κB and AP-1 were also activated in HTLV-I-infected lung epithelial cells. <it>In vivo </it>studies showed Tax protein in lung epithelial cells of mice bearing Tax and patients with HTLV-I-related pulmonary diseases.</p> <p>Conclusion</p> <p>Our results suggest that HTLV-I infects lung epithelial cells, with subsequent production of cytokines, chemokines and cell adhesion molecules through induction of NF-κB and AP-1. These changes can contribute to the clinical features of HTLV-I-related pulmonary diseases.</p

    Mechanisms of Legionella pneumophila-induced interleukin-8 expression in human lung epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Legionella pneumophila </it>is a facultative intracellular bacterium, capable of replicating within the phagosomes of macrophages and monocytes, but little is known about its interaction with human lung epithelial cells. We investigated the effect of <it>L. pneumophila </it>on the expression of interleukin-8 (IL-8) in human A549 alveolar and NCI-H292 tracheal epithelial cell lines.</p> <p>Results</p> <p>Infection of <it>L. pneumophila </it>strain, but not heat-killed strain, resulted in upregulation of IL-8. IL-8 mRNA expression was induced immediately after the infection and its signal became gradually stronger until 24 h after infection. On the other hand, IL-8 expression in A549 cells infected with <it>L. pneumophila </it>lacking a functional type IV secretion system was transient. The IL-8 expression was slightly induced at 16 h and increased at 24 h after infection with flagellin-deficient <it>Legionella</it>. Activation of the IL-8 promoter by <it>L. pneumophila </it>infection occurred through the action of nuclear factor-κB (NF-κB). Transfection of dominant negative mutants of NF-κB-inducing kinase, IκB kinase and IκB inhibited <it>L. pneumophila</it>-mediated activation of IL-8 promoter. Treatment with hsp90 inhibitor suppressed <it>L. pneumophila</it>-induced IL-8 mRNA due to deactivation of NF-κB.</p> <p>Conclusion</p> <p>Collectively, these results suggest that <it>L. pneumophila </it>induces activation of NF-κB through an intracellular signaling pathway that involves NF-κB-inducing kinase and IκB kinase, leading to IL-8 gene transcription, and that hsp90 acts as a crucial regulator in <it>L. pneumophila</it>-induced IL-8 expression, presumably contributing to immune response in <it>L. pneumophila</it>. The presence of flagellin and a type IV secretion system are critical for <it>Legionella </it>to induce IL-8 expression in lung epithelial cells.</p
    corecore