95 research outputs found

    Phantom headache: pain-memory-emotion hypothesis for chronic daily headache?

    Get PDF
    The neurobiology of chronic pain, including chronic daily headache (CDH) is not completely understood. “Pain memory” hypothesis is one of the mechanisms for phantom limb pain. We reviewed the literature to delineate a relation of “pain memory” for the development of CDH. There is a direct relation of pain to memory. Patients with poor memory have less chance to develop “pain memory”, hence less possibility to develop chronic pain. Progressive memory impairment may lead to decline in headache prevalence. A similar relation of pain is also noted with emotional or psychiatric symptoms. Literature review suggests that there is marked overlap in the neural network of pain to that of memory and emotions. We speculate that pain, memory, and emotions are interrelated in triangular pattern, and each of these three is related to other two in bidirectional pattern, i.e., stimulation of one of these will stimulate other symptoms/networks and vice versa (triangular theory for chronic pain). Longstanding or recurrent noxious stimuli will strengthen this interrelation, and this may be responsible for chronicity of pain. Reduction of both chronic pain and psychological symptoms by cognitive behavioral therapy or psychological interventions further suggests a bidirectional interrelation between pain and emotion. Longitudinal studies are warranted on the prevalence of headache and other painful conditions in patients with progressive memory impairment to delineate the relation of pain to memory. Interrelation of headache to emotional symptoms should also be explored

    Visual laterality in dolphins: importance of the familiarity of stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies of cerebral asymmetries in different species lead, on the one hand, to a better understanding of the functions of each cerebral hemisphere and, on the other hand, to develop an evolutionary history of hemispheric laterality. Our animal model is particularly interesting because of its original evolutionary path, i.e. return to aquatic life after a terrestrial phase. The rare reports concerning visual laterality of marine mammals investigated mainly discrimination processes. As dolphins are migrant species they are confronted to a changing environment. Being able to categorize new versus familiar objects would allow dolphins a rapid adaptation to novel environments. Visual laterality could be a prerequisite to this adaptability. To date, no study, to our knowledge, has analyzed the environmental factors that could influence their visual laterality.</p> <p>Results</p> <p>We investigated visual laterality expressed spontaneously at the water surface by a group of five common bottlenose dolphins (<it>Tursiops truncatus</it>) in response to various stimuli. The stimuli presented ranged from very familiar objects (known and manipulated previously) to familiar objects (known but never manipulated) to unfamiliar objects (unknown, never seen previously). At the group level, dolphins used their left eye to observe very familiar objects and their right eye to observe unfamiliar objects. However, eyes are used indifferently to observe familiar objects with intermediate valence.</p> <p>Conclusion</p> <p>Our results suggest different visual cerebral processes based either on the global shape of well-known objects or on local details of unknown objects. Moreover, the manipulation of an object appears necessary for these dolphins to construct a global representation of an object enabling its immediate categorization for subsequent use. Our experimental results pointed out some cognitive capacities of dolphins which might be crucial for their wild life given their fission-fusion social system and migratory behaviour.</p

    Imaging of Functional Connectivity in the Mouse Brain

    Get PDF
    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models

    Association between maternal nutritional status in pregnancy and offspring cognitive function in childhood and adolescence; a systematic review

    Get PDF
    Background The mother is the only source of nutrition for fetal growth including brain development. Maternal nutritional status (anthropometry, macro- and micro-nutrients) before and/or during pregnancy is therefore a potential predictor of offspring cognitive function. The relationship of maternal nutrition to offspring cognitive function is unclear. This review aims to assess existing evidence linking maternal nutritional status with offspring cognitive function. Methods Exposures considered were maternal BMI, height and weight, micronutrient status (vitamins D, B12, folate and iron) and macronutrient intakes (carbohydrate, protein and fat). The outcome was any measure of cognitive function in children aged &lt;18 years. We considered observational studies and trials with allocation groups that differed by single nutrients. We searched Medline/PubMed and the Cochrane Library databases and reference lists of retrieved literature. Two reviewers independently extracted data from relevant articles. We used methods recommended by the Centre for Reviews and Dissemination, University of York and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results Of 16,143 articles identified, 38 met inclusion criteria. Most studies were observational, and from high-income settings. There were few randomized controlled trials. There was consistent evidence linking maternal obesity with lower cognitive function in children; low maternal BMI has been inadequately studied. Among three studies of maternal vitamin D status, two showed lower cognitive function in children of deficient mothers. One trial of folic acid supplementation showed no effects on the children’s cognitive function and evidence from 13 observational studies was mixed. Among seven studies of maternal vitamin B12 status, most showed no association, though two studies in highly deficient populations suggested a possible effect. Four out of six observational studies and two trials (including one in an Iron deficient population) found no association of maternal iron status with offspring cognitive function. One trial of maternal carbohydrate/protein supplementation showed no effects on offspring cognitive function. Conclusions Current evidence that maternal nutritional status during pregnancy as defined by BMI, single micronutrient studies, or macronutrient intakes influences offspring cognitive function is inconclusive. There is a need for more trials especially in populations with high rates of maternal undernutrition. Systematic review registration Registered in PROSPERO CRD42013005702
    corecore