48,114 research outputs found

    Polyamine regulation of nitric oxide production in LPS-activated macrophages

    Get PDF
    © European Communities, 1999 Reproduction is authorised provided the source is acknowledgedPolyamines are physiological cellular constituents essential for cell growth and differentiation, and regulate a multitude of cellular functions (1-4). Nitric oxide (NO) is an effector molecule in both the cardiovascular and nervous systems (5,6). Intracellularly, NO and polyamines are derived from arginine, the latter via the rate-limiting enzyme ornithine decarboxylase (ODC; 7). This enzyme, like the inducible nitric oxide synthase (iNOS), is induced by proinflammatory cytokines and bacterial lipopolysaccharide (LPS), resulting in enhanced enzyme activity and increased polyamine biosynthesis (8,9). While the increase in polyamine synthesis would have important implications for cell growth and proliferation, it is not clear how this might affect iNOS pathway. Inhibition of polyamine biosynthesis impairs the phagocytic capacity of macrophages (10) and can block macrophage activation by tumour necrosis factor (11). Recently, exogenous polyamines have been shown to inhibit NO production in LPS-activated J774 cells (12) and by isolated neuronal NO synthase (13). However, these effects required relatively high concentrations of polyamines compared to those found in plasma and in intact cells (14), and appear to be due to aldehyde metabolites resulting from polyamine oxidation by the amine oxidase present in calf serum (15-17). In this study we have explored the effects of both endogenous and exogenous polyamines on the inducible L-arginine-NO pathway by examining whether inhibition of ornithine decarboxylase (ODC) and thus of polyamine biosynthesis (7), regulates NO production in lipopolysaccharide-activated J774 cells, a murine macrophage cell lineFinal Published versio

    Freshwater fish and crayfish communities of the tributaries of the Margaret River

    Get PDF
    Tributaries and headwaters of major rivers are known to be important spawning and nursery habitats of freshwater endemic fishes in south-western Australia (see for example the Collie River in Pen & Potter 1990, and the Blackwood River in Beatty et al. 2006, 2008). Fishes of the Margaret River have previously been examined by Morgan et al. (1998) and Morgan & Beatty (2003) with the monitoring of the functioning of the two fishways on the river documented in Morgan & Beatty (2004, 2007) and Beatty & Morgan (2008). The river is known to be of conservation importance due to it housing five of the eight endemic freshwater fishes of the south-west region, as well as housing the majority (five of the six species) of the Cherax species of freshwater crayfishes found in the south-west; including the Margaret River endemic Critically Endangered Hairy Marron. Despite this known value and considerable volume of research on the fishes in the main channel of the Margaret River, little is known on the fishes and freshwater crayfishes of the river 19s major tributaries. The aim of this study is to document the freshwater fish distribution in the major tributaries of the Margaret River (i.e. Bramley, Darch, and Yalgardup Brooks) during or close to the breeding period for the majority of the species and to provide a broad assessment and comparison of population demographics of the different species in the different tributaries. This information is required for the formulation of River Action Plans for these systems by the Cape to Cape Catchments Group

    Structural basis of complement membrane attack complex formation

    Get PDF
    In response to complement activation, the membrane attack complex (MAC) assembles from fluid-phase proteins to form pores in lipid bilayers. MAC directly lyses pathogens by a ‘multi-hit’ mechanism; however, sublytic MAC pores on host cells activate signalling pathways. Previous studies have described the structures of individual MAC components and subcomplexes; however, the molecular details of its assembly and mechanism of action remain unresolved. Here we report the electron cryo-microscopy structure of human MAC at subnanometre resolution. Structural analyses define the stoichiometry of the complete pore and identify a network of interaction interfaces that determine its assembly mechanism. MAC adopts a ‘split-washer’ configuration, in contrast to the predicted closed ring observed for perforin and cholesterol-dependent cytolysins. Assembly precursors partially penetrate the lipid bilayer, resulting in an irregular β-barrel pore. Our results demonstrate how differences in symmetric and asymmetric components of the MAC underpin a molecular basis for pore formation and suggest a mechanism of action that extends beyond membrane penetration

    Gypsy moths and American dog ticks: Space partners

    Get PDF
    An experiment intended for the space shuttle and designed to investigate the effects of weightlessness and total darkness on gypsy moth eggs and engorged American dog ticks is described. The objectives are: (1) to reevaluate the effects of zero gravity on the termination of diapause/hibernation of embryonated gypsy moth eggs, (2) to determine the effect of zero gravity on the ovipositions and subsequent hatch from engorged female American dog ticks that have been induced to diapause in the laboratory, and (3) to determine whether morphological or biochemical changes occur in the insects under examination. Results will be compared with those from a similar experiment conducted on Skylab 4

    Rapid rotation of micron and submicron dielectric particles measured using optical tweezers

    No full text
    We demonstrate the use of a laser trap (‘optical tweezers’) and back-focal-plane position detector to measure rapid rotation in aqueous solution of single particles with sizes in the vicinity of 1 μm. Two types of rotation were measured: electrorotation of polystyrene microspheres and rotation of the flagellar motor of the bacterium Vibrio alginolyticus. In both cases, speeds in excess of 1000 Hz (rev s−1) were measured. Polystyrene beads of diameter about 1 μm labelled with smaller beads were held at the centre of a microelectrode array by the optical tweezers. Electrorotation of the labelled beads was induced by applying a rotating electric field to the solution using microelectrodes. Electrorotation spectra were obtained by varying the frequency of the applied field and analysed to obtain the surface conductance of the beads. Single cells of V. alginolyticus were trapped and rotation of the polar sodium-driven flagellar motor was measured. Cells rotated more rapidly in media containing higher concentrations of Na+, and photodamage caused by the trap was considerably less when the suspending medium did not contain oxygen. The technique allows single-speed measurements to be made in less than a second and separate particles can be measured at a rate of several per minute

    Radioisotope thermal photovoltaic application of the GaSb solar cell

    Get PDF
    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach
    • …
    corecore