4,563 research outputs found

    Belousov-Zhabotinsky droplet mixing on-chip for chemical computing applications

    No full text
    Without an imposed physical structure, even the most complex chemistries are limited in their ability to process information. For example, the Belousov-Zhabotinsky (BZ) oscillating reaction has been shown to have information procession potential, but only if structure is imposed e.g. using physical barriers or light-sensitive catalysts. Recently, separated BZ droplets in oil have been investigated. Another option for aqueous/oil systems is to add lipid into the oil, which self-assembles into a monolayer at the phase boundary. If the lipid-stabilised droplets are brought into contact, a bilayer is formed, separating the BZ droplets into compartments. This technique is more flexible than other methods of imparting structure, allowing for the creation of droplet arrays inspired by biological neuronal networks

    Invariance of the correlation energy at high density and large dimension in two-electron systems

    Full text link
    We prove that, in the large-dimension limit, the high-density correlation energy \Ec of two opposite-spin electrons confined in a DD-dimensional space and interacting {\em via} a Coulomb potential is given by \Ec \sim -1/(8D^2) for any radial confining potential V(r)V(r). This result explains the observed similarity of \Ec in a variety of two-electron systems in three-dimensional space.Comment: 4 pages, 1 figure, to appear in Phys. Rev. Let

    Lithium alters brain activation in bipolar disorder in a task- and state-dependent manner: an fMRI study

    Get PDF
    BACKGROUND: It is unknown if medications used to treat bipolar disorder have effects on brain activation, and whether or not any such changes are mood-independent. METHODS: Patients with bipolar disorder who were depressed (n = 5) or euthymic (n = 5) were examined using fMRI before, and 14 days after, being started on lithium (as monotherapy in 6 of these patients). Patients were examined using a word generation task and verbal memory task, both of which have been shown to be sensitive to change in previous fMRI studies. Differences in blood oxygenated level dependent (BOLD) magnitude between the pre- and post-lithium results were determined in previously defined regions of interest. Severity of mood was determined by the Hamilton Depression Scale for Depression (HAM-D) and the Young mania rating scale (YMRS). RESULTS: The mean HAM-D score at baseline in the depressed group was 15.4 ± 0.7, and after 2 weeks of lithium it was 11.0 ± 2.6. In the euthymic group it was 7.6 ± 1.4 and 3.2 ± 1.3 respectively. At baseline mean BOLD signal magnitude in the regions of interest for the euthymic and depressed patients were similar in both the word generation task (1.56 ± 0.10 and 1.49 ± 0.10 respectively) and working memory task (1.02 ± 0.04 and 1.12 ± 0.06 respectively). However, after lithium the mean BOLD signal decreased significantly in the euthymic group in the word generation task only (1.56 ± 0.10 to 1.00 ± 0.07, p < 0.001). Post-hoc analysis showed that these differences were statistically significant in Broca's area, the left pre-central gyrus, and the supplemental motor area. CONCLUSION: This is the first study to examine the effects of lithium on brain activation in bipolar patients. The results suggest that lithium has an effect on euthymic patients very similar to that seen in healthy volunteers. The same effects are not seen in depressed bipolar patients, although it is uncertain if this lack of change is linked to the lack of major improvements in mood in this group of patients. In conclusion, this study suggests that lithium may have effects on brain activation that are task- and state-dependent. Given the small study size and the mildness of the patient's depression these results require replication

    Effects of siRNA-mediated knockdown of GSK3β on retinal ganglion cell survival and neurite/axon growth

    Get PDF
    There are contradictory reports on the role of the serine/threonine kinase isoform glycogen synthase kinase-3&beta; (GSK3&beta;) after injury to the central nervous system (CNS). Some report that GSK3 activity promotes axonal growth or myelin disinhibition, whilst others report that GSK3 activity prevents axon regeneration. In this study, we sought to clarify if suppression of GSK3&beta; alone and in combination with the cellular-stress-induced factor RTP801 (also known as REDD1: regulated in development and DNA damage response protein), using translationally relevant siRNAs, promotes retinal ganglion cell (RGC) survival and neurite outgrowth/axon regeneration. Adult mixed retinal cell cultures, prepared from rats at five days after optic nerve crush (ONC) to activate retinal glia, were treated with siRNA to GSK3&beta; (siGSK3&beta;) alone or in combination with siRTP801 and RGC survival and neurite outgrowth were quantified in the presence and absence of Rapamycin or inhibitory Nogo-A peptides. In in vivo experiments, either siGSK3&beta; alone or in combination with siRTP801 were intravitreally injected every eight days after ONC and RGC survival and axon regeneration was assessed at 24 days. Optimal doses of siGSK3&beta; alone promoted significant RGC survival, increasing the number of RGC with neurites without affecting neurite length, an effect that was sensitive to Rapamycin. In addition, knockdown of GSK3&beta; overcame Nogo-A-mediated neurite growth inhibition. Knockdown of GSK3&beta; after ONC in vivo enhanced RGC survival but not axon number or length, without potentiating glial activation. Knockdown of RTP801 increased both RGC survival and axon regeneration, whilst the combined knockdown of GSK3&beta; and RTP801 significantly increased RGC survival, neurite outgrowth, and axon regeneration over and above that observed for siGSK3&beta; or siRTP801 alone. These results suggest that GSK3&beta; suppression promotes RGC survival and axon initiation whilst, when in combination with RTP801, it also enhanced disinhibited axon elongation

    Deficits in episodic future thinking following acute alcohol consumption

    Get PDF
    Rationale Acute alcohol consumption adversely affects many cognitive abilities, including episodic memory and executive functioning. However, no study to date has tested whether these acute effects of alcohol also extend to episodic future thinking (EFT). This is a surprising omission given that EFT refers to the ability to imagine oneself experiencing the future, a highly adaptive ability that has been implicated in many important functional behaviours. EFT is also thought to impose demands on episodic memory and executive control. Objectives The current study was designed to provide the first test of whether a moderate dose of alcohol influences EFT and whether any observed EFT difficulties are secondary to broader problems in episodic memory and executive functioning. Sex differences in EFT following acute alcohol consumption were also examined. Methods One hundred and twenty-four healthy adult social drinkers were recruited and randomly assigned to either the alcohol (n = 61) or placebo (n = 63) condition. Participants were administered a dose of 0.6 g/kg alcohol or a matched placebo drink. Results Relative to the placebo condition, EFT was impaired by acute alcohol consumption. This impairment was underpinned by broader difficulties with episodic memory, but not executive functioning. There were no sex differences in EFT performance following acute alcohol use. Conclusion These data provide novel insights into the effects of acute alcohol consumption on EFT and the broader cognitive mechanisms that contribute to these difficulties. The results are discussed in relation to their implications for understanding many of the maladaptive behaviours commonly associated with acute alcohol use

    Building consumer understanding by utilizing a Bayesian hierarchical structure within the behavioral perspective model

    Get PDF
    This study further develops the theoretical and empirical literature on the Behavioral Perspective Model (BPM) in three ways through an empirical analysis of the Great Britain (GB) biscuit category. First, following a literature review and a category analysis, a more complex model is constructed using the BPM structure and then testing the hypothesis uncovered. Second, the structure of the data theoretically calls for a hierarchical structure of the model, and hence, this is introduced into the BPM framework and is compared to a non-hierarchical structure of the same model. Finally, a discussion is undertaken on the advantages of a Bayesian approach to calculating parameter inference. Two models are built by utilizing vague and informed prior distributions respectively, and the results are compared. This study shows the importance of building appropriate model structures for analysis and demonstrates the advantages and challenges of utilizing a Bayesian approach. It also further demonstrates the BPM’s suitability as a vehicle to better understand consumer behavio

    Conserved syntenic clusters of protein coding genes are missing in birds

    Get PDF
    BACKGROUND: Birds are one of the most highly successful and diverse groups of vertebrates, having evolved a number of distinct characteristics, including feathers and wings, a sturdy lightweight skeleton and unique respiratory and urinary/excretion systems. However, the genetic basis of these traits is poorly understood. RESULTS: Using comparative genomics based on extensive searches of 60 avian genomes, we have found that birds lack approximately 274 protein coding genes that are present in the genomes of most vertebrate lineages and are for the most part organized in conserved syntenic clusters in non-avian sauropsids and in humans. These genes are located in regions associated with chromosomal rearrangements, and are largely present in crocodiles, suggesting that their loss occurred subsequent to the split of dinosaurs/birds from crocodilians. Many of these genes are associated with lethality in rodents, human genetic disorders, or biological functions targeting various tissues. Functional enrichment analysis combined with orthogroup analysis and paralog searches revealed enrichments that were shared by non-avian species, present only in birds, or shared between all species. CONCLUSIONS: Together these results provide a clearer definition of the genetic background of extant birds, extend the findings of previous studies on missing avian genes, and provide clues about molecular events that shaped avian evolution. They also have implications for fields that largely benefit from avian studies, including development, immune system, oncogenesis, and brain function and cognition. With regards to the missing genes, birds can be considered ‘natural knockouts’ that may become invaluable model organisms for several human diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0565-1) contains supplementary material, which is available to authorized users

    Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids

    Full text link
    We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year (HCL) as a function of the post-disruption increase in brightness (delta m) and subsequent brightness decay rate (tau). The confidence limits were calculated using the brightest unknown main belt asteroid (V = 18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1's catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event's photometric behavior in a small aperture centered on the catastrophic disruption event. Our simplistic catastrophic disruption model suggests that delta m = 20 mag and 0.01 mag d-1 < tau < 0.1 mag d-1 which would imply that H0 = 28 -- strongly inconsistent with H0,B2005 = 23.26 +/- 0.02 predicted by Bottke et al. (2005) using purely collisional models. We postulate that the solution to the discrepancy is that > 99% of main belt catastrophic disruptions in the size range to which this study was sensitive (100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V = 18.5.Comment: 61 Pages, 10 Figures, 3 Table

    World-line Quantisation of a Reciprocally Invariant System

    Get PDF
    We present the world-line quantisation of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase space coordinates" (xμ(τ),pμ(τ))(x^\mu(\tau),p^\mu(\tau)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate dependent transformations of an additional compact phase coordinate, θ(τ)\theta(\tau)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrisations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D1,1)U(D1,1)H(D)Q(D-1,1)\cong U(D-1,1)\ltimes H(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated to the phase variable θ(τ)\theta(\tau)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical spectrum, leaving over spin zero states only, the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well
    corecore